• Am J Emerg Med · Jul 2024

    Comparative Study

    Comparative analysis of ChatGPT, Gemini and emergency medicine specialist in ESI triage assessment.

    • Gürbüz Meral, Serdal Ateş, Serkan Günay, Ahmet Öztürk, and Mikail Kuşdoğan.
    • Department of Emergency Medicine, Specialist in Emergency Medicine, Hitit University Çorum Erol Olçok Education and Research Hospital, Çorum, Turkey. Electronic address: gurbuzmeral61@gmail.com.
    • Am J Emerg Med. 2024 Jul 1; 81: 146150146-150.

    IntroductionThe term Artificial Intelligence (AI) was first coined in the 1960s and has made significant progress up to the present day. During this period, numerous AI applications have been developed. GPT-4 and Gemini are two of the best-known of these AI models. As a triage system The Emergency Severity Index (ESI) is currently one of the most commonly used for effective patient triage in the emergency department. The aim of this study is to evaluate the performance of GPT-4, Gemini, and emergency medicine specialists in ESI triage against each other; furthermore, it aims to contribute to the literature on the usability of these AI programs in emergency department triage.MethodsOur study was conducted between February 1, 2024, and February 29, 2024, among emergency medicine specialists in Turkey, as well as with GPT-4 and Gemini. Ten emergency medicine specialists were included in our study but as a limitation the emergency medicine specialists participating in the study do not frequently use the ESI triage model in daily practice. In the first phase of our study, 100 case examples related to adult or trauma patients were extracted from the sample and training cases found in the ESI Implementation Handbook. In the second phase of our study, the provided responses were categorized into three groups: correct triage, over-triage, and under-triage. In the third phase of our study, the questions were categorized according to the correct triage responses.ResultsIn the results of our study, a statistically significant difference was found between the three groups in terms of correct triage, over-triage, and under-triage (p < 0.001). GPT-4 was found to have the highest correct triage rate with an average of 70.60 (±3.74), while Gemini had the highest over-triage rate with an average of 35.2 (±2.93) (p < 0.001). The highest under-triage rate was observed in emergency medicine specialists (32.90 (±11.83)). In the ESI 1-2 class, Gemini had a correct triage rate of 87.77%, GPT-4 had 85.11%, and emergency medicine specialists had 49.33%.ConclusionIn conclusion, our study shows that both GPT-4 and Gemini can accurately triage critical and urgent patients in ESI 1&2 groups at a high rate. Furthermore, GPT-4 has been more successful in ESI triage for all patients. These results suggest that GPT-4 and Gemini could assist in accurate ESI triage of patients in emergency departments.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…