• Anesthesiology · Aug 2024

    Electroencephalographic indices for clinical endpoints during propofol anesthesia in infants-an early phase propofol biomarker-finding study.

    • Ian Yuan, Annery G Garcia-Marcinkiewicz, Bingqing Zhang, Allison M Ulrich, Georgia Georgostathi, Richard M Missett, Shih-Shan Lang, James L Bruton, and C Dean Kurth.
    • Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
    • Anesthesiology. 2024 Aug 1; 141 (2): 353364353-364.

    BackgroundUnlike expired sevoflurane concentration, propofol lacks a biomarker for its brain effect site concentration, leading to dosing imprecision particularly in infants. Electroencephalography monitoring can serve as a biomarker for propofol effect site concentration, yet proprietary electroencephalography indices are not validated in infants. The authors evaluated spectral edge frequency (SEF95) as a propofol anesthesia biomarker in infants. It was hypothesized that the SEF95 targets will vary for different clinical stimuli and an inverse relationship existed between SEF95 and propofol plasma concentration.MethodsThis prospective study enrolled infants (3 to 12 months) to determine the SEF95 ranges for three clinical endpoints of anesthesia (consciousness-pacifier placement, pain-electrical nerve stimulation, and intubation-laryngoscopy) and correlation between SEF95 and propofol plasma concentration at steady state. Dixon's up-down method was used to determine target SEF95 for each clinical endpoint. Centered isotonic regression determined the dose-response function of SEF95 where 50% and 90% of infants (ED50 and ED90) did not respond to the clinical endpoint. Linear mixed-effect model determined the association of propofol plasma concentration and SEF95.ResultsOf 49 enrolled infants, 44 evaluable (90%) showed distinct SEF95 for endpoints: pacifier (ED50, 21.4 Hz; ED90, 19.3 Hz), electrical stimulation (ED50, 12.6 Hz; ED90, 10.4 Hz), and laryngoscopy (ED50, 8.5 Hz; ED90, 5.2 Hz). From propofol 0.5 to 6 μg/ml, a 1-Hz SEF95 increase was linearly correlated to a 0.24 (95% CI, 0.19 to 0.29; P < 0.001) μg/ml decrease in plasma propofol concentration (marginal R2 = 0.55).ConclusionsSEF95 can be a biomarker for propofol anesthesia depth in infants, potentially improving dosing accuracy and utilization of propofol anesthesia in this population.Copyright © 2024 American Society of Anesthesiologists. All Rights Reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.