• Medicine · May 2024

    Review

    β-Thalassemia gene editing therapy: Advancements and difficulties.

    • Jing Hu, Yebing Zhong, Pengxiang Xu, Liuyan Xin, Xiaodan Zhu, Xinghui Jiang, Weifang Gao, Bin Yang, and Yijian Chen.
    • The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China.
    • Medicine (Baltimore). 2024 May 3; 103 (18): e38036e38036.

    Abstractβ-Thalassemia is the world's number 1 single-gene genetic disorder and is characterized by suppressed or impaired production of β-pearl protein chains. This results in intramedullary destruction and premature lysis of red blood cells in peripheral blood. Among them, patients with transfusion-dependent β-thalassemia face the problem of long-term transfusion and iron chelation therapy, which leads to clinical complications and great economic stress. As gene editing technology improves, we are seeing the dawn of a cure for the disease, with its reduction of ineffective erythropoiesis and effective prolongation of survival in critically ill patients. Here, we provide an overview of β-thalassemia distribution and pathophysiology. In addition, we focus on gene therapy and gene editing advances. Nucleic acid endonuclease tools currently available for gene editing fall into 3 categories: zinc finger nucleases, transcription activator-like effector nucleases, and regularly interspaced short palindromic repeats (CRISPR-Cas9) nucleases. This paper reviews the exploratory applications and exploration of emerging therapeutic tools based on 3 classes of nucleic acid endonucleases in the treatment of β-thalassemia diseases.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.