-
Observational Study
Prediction model for future OHCAs based on geospatial and demographic data: An observational study.
- Kristian Bundgaard Ringgren, Vilde Ung, Thomas Alexander Gerds, Kristian Hay Kragholm, Peter Ascanius Jacobsen, Filip Lyng Lindgren, Anne Juul Grabmayr, ChristensenHelle CollatzHCCopenhagen Emergency Medical Services, University of Copenhagen, Copenhagen, Denmark.National Clinical Registries, Frederiksberg, Denmark., Elisabeth Helen Anna Mills, Kollander JakobsenLouiseLCopenhagen Emergency Medical Services, University of Copenhagen, Copenhagen, Denmark., Harman Yonis, Carolina Malta Hansen, Fredrik Folke, Freddy Lippert, and Christian Torp-Pedersen.
- Department of Anesthesia and Intensive Care, North Denmark Regional Hospital, Hjoerring, Denmark.
- Medicine (Baltimore). 2024 May 10; 103 (19): e38070e38070.
AbstractThis study used demographic data in a novel prediction model to identify areas with high risk of out-of-hospital cardiac arrest (OHCA) in order to target prehospital preparedness. We combined data from the nationwide Danish Cardiac Arrest Registry with geographical- and demographic data on a hectare level. Hectares were classified in a hierarchy according to characteristics and pooled to square kilometers (km2). Historical OHCA incidence of each hectare group was supplemented with a predicted annual risk of at least 1 OHCA to ensure future applicability. We recorded 19,090 valid OHCAs during 2016 to 2019. The mean annual OHCA rate was highest in residential areas with no point of public interest and 100 to 1000 residents per hectare (9.7/year/km2) followed by pedestrian streets with multiple shops (5.8/year/km2), areas with no point of public interest and 50 to 100 residents (5.5/year/km2), and malls with a mean annual incidence per km2 of 4.6. Other high incidence areas were public transport stations, schools and areas without a point of public interest and 10 to 50 residents. These areas combined constitute 1496 km2 annually corresponding to 3.4% of the total area of Denmark and account for 65% of the OHCA incidence. Our prediction model confirms these areas to be of high risk and outperforms simple previous incidence in identifying future risk-sites. Two thirds of out-of-hospital cardiac arrests were identified in only 3.4% of the area of Denmark. This area was easily identified as having multiple residents or having airports, malls, pedestrian shopping streets or schools. This result has important implications for targeted intervention such as automatic defibrillators available to the public. Further, demographic information should be considered when implementing such interventions.Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.