• Am J Manag Care · May 2024

    Emergency department risk model: timely identification of patients for outpatient care coordination.

    • Maryam Zolnoori, Mark D Williams, Kurt B Angstman, Chung-Il Wi, William B Leasure, Shrinath Patel, and Che Ngufor.
    • School of Nursing, Columbia University Irving Medical Center, 390 Fort Washington Ave, New York, NY 10033. Email: mz2825@cumc.columbia.edu.
    • Am J Manag Care. 2024 May 1; 30 (5): e147e156e147-e156.

    ObjectiveMajor depressive disorder (MDD) is linked to a 61% increased risk of emergency department (ED) visits and frequent ED usage. Collaborative care management (CoCM) models target MDD treatment in primary care, but how best to prioritize patients for CoCM to prevent frequent ED utilization remains unclear. This study aimed to develop and validate a risk identification model to proactively detect patients with MDD in CoCM at high risk of frequent (≥ 3) ED visits.Study DesignThis retrospective cohort study utilized electronic health records from Mayo Clinic's primary care system to develop and validate a machine learning-based risk identification model. The model predicts the likelihood of frequent ED visits among patients with MDD within a 12-month period.MethodsData were collected from Mayo Clinic's primary care system between May 1, 2006, and December 19, 2018. Risk identification models were developed and validated using machine learning classifiers to estimate frequent ED visit risks over 12 months. The Shapley Additive Explanations model identified variables driving frequent ED visits.ResultsThe patient population had a mean (SD) age of 39.78 (16.66) years, with 30.3% being male and 6.1% experiencing frequent ED visits. The best-performing algorithm (elastic-net logistic regression) achieved an area under the curve of 0.79 (95% CI, 0.74-0.84), a sensitivity of 0.71 (95% CI, 0.57-0.82), and a specificity of 0.76 (95% CI, 0.64-0.85) in the development data set. In the validation data set, the best-performing algorithm (random forest) achieved an area under the curve of 0.79, a sensitivity of 0.83, and a specificity of 0.61. Significant variables included male gender, prior frequent ED visits, high Patient Health Questionnaire-9 score, low education level, unemployment, and use of multiple medications.ConclusionsThe risk identification model has potential for clinical application in triaging primary care patients with MDD in CoCM, aiming to reduce future ED utilization.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…