• Crit Care · Aug 2005

    Comparative Study

    A quantitative analysis of the acidosis of cardiac arrest: a prospective observational study.

    • Jun Makino, Shigehiko Uchino, Hiroshi Morimatsu, and Rinaldo Bellomo.
    • Tertiary Emergency Medical Center, Tokyo Metropolitan Bokuto Hospital, Tokyo, Japan. makinet@jt7.so-net.ne.jp
    • Crit Care. 2005 Aug 1; 9 (4): R357R362R357-62.

    IntroductionMetabolic acidosis is common in patients with cardiac arrest and is conventionally considered to be essentially due to hyperlactatemia. However, hyperlactatemia alone fails to explain the cause of metabolic acidosis. Recently, the Stewart-Figge methodology has been found to be useful in explaining and quantifying acid-base changes in various clinical situations. This novel quantitative methodology might also provide useful insight into the factors responsible for the acidosis of cardiac arrest. We proposed that hyperlactatemia is not the sole cause of cardiac arrest acidosis and that other factors participate significantly in its development.MethodsOne hundred and five patients with out-of-hospital cardiac arrest and 28 patients with minor injuries (comparison group) who were admitted to the Emergency Department of a tertiary hospital in Tokyo were prospectively included in this study. Serum sodium, potassium, ionized calcium, magnesium, chloride, lactate, albumin, phosphate and blood gases were measured as soon as feasible upon arrival to the emergency department and were later analyzed using the Stewart-Figge methodology.ResultsPatients with cardiac arrest had a severe metabolic acidosis (standard base excess -19.1 versus -1.5; P < 0.0001) compared with the control patients. They were also hyperkalemic, hypochloremic, hyperlactatemic and hyperphosphatemic. Anion gap and strong ion gap were also higher in cardiac arrest patients. With the comparison group as a reference, lactate was found to be the strongest determinant of acidosis (-11.8 meq/l), followed by strong ion gap (-7.3 meq/l) and phosphate (-2.9 meq/l). This metabolic acidosis was attenuated by the alkalinizing effect of hypochloremia (+4.6 meq/l), hyperkalemia (+3.6 meq/l) and hypoalbuminemia (+3.5 meq/l).ConclusionThe cause of metabolic acidosis in patients with out-of-hospital cardiac arrest is complex and is not due to hyperlactatemia alone. Furthermore, compensating changes occur spontaneously, attenuating its severity.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.