-
- Yas Sanaiha, Arjun Verma, Ayesha P Ng, Joseph Hadaya, Clifford Y Ko, Christian deVirgilio, and Peyman Benharash.
- Cardiovascular Outcomes Research Laboratories (CORELAB), University of California Los Angeles, Los Angeles, CA, USA.
- Resuscitation. 2024 Jul 1; 200: 110241110241.
IntroductionAccurate prediction of complications often informs shared decision-making. Derived over 10 years ago to enhance prediction of intra/post-operative myocardial infarction and cardiac arrest (MI/CA), the Gupta score has been criticized for unreliable calibration and inclusion of a wide spectrum of unrelated operations. In the present study, we developed a novel machine learning (ML) model to estimate perioperative risk of MI/CA and compared it to the Gupta score.MethodsPatients undergoing major operations were identified from the 2016-2020 ACS-NSQIP. The Gupta score was calculated for each patient, and a novel ML model was developed to predict MI/CA using ACS NSQIP-provided data fields as covariates. Discrimination (C-statistic) and calibration (Brier score) of the ML model were compared to the existing Gupta score within the entire cohort and across operative subgroups.ResultsOf 2,473,487 patients included for analysis, 25,177 (1.0%) experienced MI/CA (55.2% MI, 39.1% CA, 5.6% MI and CA). The ML model, which was fit using a randomly selected training cohort, exhibited higher discrimination within the testing dataset compared to the Gupta score (C-statistic 0.84 vs 0.80, p < 0.001). Furthermore, the ML model had significantly better calibration in the entire cohort (Brier score 0.0097 vs 0.0100). Model performance was markedly improved among patients undergoing thoracic, aortic, peripheral vascular and foregut surgery.ConclusionsThe present ML model outperformed the Gupta score in the prognostication of MI/CA across a heterogenous range of operations. Given the growing integration of ML into healthcare, such models may be readily incorporated into clinical practice and guide benchmarking efforts.Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.