• Intern Emerg Med · May 2024

    A machine learning-based lung ultrasound algorithm for the diagnosis of acute heart failure.

    • Stefano Coiro, Claire Lacomblez, Kevin Duarte, Luna Gargani, Tripti Rastogi, Tahar Chouihed, and Nicolas Girerd.
    • Cardiology Department, Santa Maria Della Misericordia Hospital, Perugia, Italy.
    • Intern Emerg Med. 2024 May 23.

    AbstractLung ultrasound (LUS) is an effective tool for diagnosing acute heart failure (AHF). However, several imaging protocols currently exist and how to best use LUS remains undefined. We aimed at developing a lung ultrasound-based model for AHF diagnosis using machine learning. Random forest and decision trees were generated using the LUS data (via an 8-zone scanning protocol) in patients with acute dyspnea admitted to the Emergency Department (PLUME study, N = 117) and subsequently validated in an external dataset (80 controls from the REMI study, 50 cases from the Nancy AHF cohort). Using the random forest model, total B-line sum (i.e., in both hemithoraces) was the most significant variable for identifying AHF, followed by the difference in B-line sum between the superior and inferior lung areas. The decision tree algorithm had a good diagnostic accuracy [area under the curve (AUC) = 0.865] and identified three risk groups (i.e., low 24%, high 70%, and very high-risk 96%) for AHF. The very high-risk group was defined by the presence of 14 or more B-lines in both hemithoraces while the high-risk group was described as having either B-lines mostly localized in superior points or in the right hemithorax. Accuracy in the validation cohort was excellent (AUC = 0.906). Importantly, adding the algorithm on top of a validated clinical score and classical definition of positive LUS scanning for AHF resulted in a significant improvement in diagnostic accuracy (continuous net reclassification improvement = 1.21, P < 0.001). Our simple lung ultrasound-based machine learning algorithm features an excellent performance and may constitute a validated strategy to diagnose AHF.© 2024. The Author(s), under exclusive licence to Società Italiana di Medicina Interna (SIMI).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.