-
- Sherali Bomrah, Mohy Uddin, Umashankar Upadhyay, Matthieu Komorowski, Jyoti Priya, Eshita Dhar, Shih-Chang Hsu, and Shabbir Syed-Abdul.
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, 235, Taiwan.
- Crit Care. 2024 May 28; 28 (1): 180180.
BackgroundSepsis, an acute and potentially fatal systemic response to infection, significantly impacts global health by affecting millions annually. Prompt identification of sepsis is vital, as treatment delays lead to increased fatalities through progressive organ dysfunction. While recent studies have delved into leveraging Machine Learning (ML) for predicting sepsis, focusing on aspects such as prognosis, diagnosis, and clinical application, there remains a notable deficiency in the discourse regarding feature engineering. Specifically, the role of feature selection and extraction in enhancing model accuracy has been underexplored.ObjectivesThis scoping review aims to fulfill two primary objectives: To identify pivotal features for predicting sepsis across a variety of ML models, providing valuable insights for future model development, and To assess model efficacy through performance metrics including AUROC, sensitivity, and specificity.ResultsThe analysis included 29 studies across diverse clinical settings such as Intensive Care Units (ICU), Emergency Departments, and others, encompassing 1,147,202 patients. The review highlighted the diversity in prediction strategies and timeframes. It was found that feature extraction techniques notably outperformed others in terms of sensitivity and AUROC values, thus indicating their critical role in improving sepsis prediction models.ConclusionKey dynamic indicators, including vital signs and critical laboratory values, are instrumental in the early detection of sepsis. Applying feature selection methods significantly boosts model precision, with models like Random Forest and XG Boost showing promising results. Furthermore, Deep Learning models (DL) reveal unique insights, spotlighting the pivotal role of feature engineering in sepsis prediction, which could greatly benefit clinical practice.© 2024. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.