-
- Maria José Uparela-Reyes, Lina María Villegas-Trujillo, Jorge Cespedes, Miguel Velásquez-Vera, and Andrés M Rubiano.
- Neurosurgery Section, School of Medicine, Universidad del Valle, Cali, Colombia; Neurosurgery Section, Hospital Universitario del Valle, Cali, Colombia. Electronic address: maria.uparela@correounivalle.edu.co.
- World Neurosurg. 2024 Aug 1; 188: 839283-92.
BackgroundTraumatic brain injury (TBI) has become a major source of disability worldwide, increasing the interest in algorithms that use artificial intelligence (AI) to optimize the interpretation of imaging studies, prognosis estimation, and critical care issues. In this study we present a bibliometric analysis and mini-review on the main uses that have been developed for TBI in AI.MethodsThe results informing this review come from a Scopus database search as of April 15, 2023. The bibliometric analysis was carried out via the mapping bibliographic metrics method. Knowledge mapping was made in the VOSviewer software (V1.6.18), analyzing the "link strength" of networks based on co-occurrence of key words, countries co-authorship, and co-cited authors. In the mini-review section, we highlight the main findings and contributions of the studies.ResultsA total of 495 scientific publications were identified from 2000 to 2023, with 9262 citations published since 2013. Among the 160 journals identified, The Journal of Neurotrauma, Frontiers in Neurology, and PLOS ONE were those with the greatest number of publications. The most frequently co-occurring key words were: "machine learning", "deep learning", "magnetic resonance imaging", and "intracranial pressure". The United States accounted for more collaborations than any other country, followed by United Kingdom and China. Four co-citation author clusters were found, and the top 20 papers were divided into reviews and original articles.ConclusionsAI has become a relevant research field in TBI during the last 20 years, demonstrating great potential in imaging, but a more modest performance for prognostic estimation and neuromonitoring.Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.