• World Neurosurg · Sep 2024

    Case Reports

    Utility Of multimodal Intraoperative Neuromonitoring (IONM) For Excision of Filum Terminale Ependymoma in Close Proximity to Conus.

    • Kartik Manoj Multani, Parthiban Velayutham, and Aliasgar Moiyadi.
    • Neurosurgical Oncology Services, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India.
    • World Neurosurg. 2024 Sep 1; 189: 535453-54.

    AbstractMyxopapillary ependymomas (MPEs) are well-circumscribed tumors arising mainly from the caudal neuraxis, i.e., conus medullaris (CM) and filum terminale (FT), commonly seen in adults with median age at presentation of 39 years.1 Owing to its partially aggressive clinical behavior involving cerebrospinal fluid dissemination and local recurrence, MPE is classified as grade 2 in the fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System.2 Gross total resection without capsular violation is key, with subtotal resection being directly associated with local recurrence.3The FT has an intradural and extradural component. The intradural FT extends from the inferior tip of the CM to the coccyx.4 The intradural FT-CM junction is not demarcated, but rather a zone of transition, with neural tissue being incrementally replaced by fibrous tissue of filum, gradually converging to a pure non-neural FT.5 In intramedullary FT MPE in close proximity to the lower end of conus, achieving gross total resection presents a great challenge. Neuromonitoring is crucial to ensure preservation of vital CM functions. We present the case of a 33-year-old man with focal nocturnal back pain of 6 months' duration followed by bilateral lower limb deep boring pain. He had no neurological deficits. Preoperative magnetic resonance imaging revealed a T2 hyperintense, heterogeneous contrast-enhancing intradural extramedullary mass at L1. Video 1 highlights step-by-step en bloc excision of the FT MPE with technical nuances, including intraoperative neurophysiological monitoring. Triggered electromyography (EMG) was used to positively map the eloquent CM and identify the intradural FT-conus interface at the superior pole of the tumor, which was then carefully dissected under continuous bulbocavernosus reflex monitoring. Similarly, we confirmed non-neural intradural FT at the lower pole by negative mapping and resected the lesion en bloc with an adequate stump for clear margins. Free-run EMG monitored all the rootlets that adhered to or were in close proximity to the lesion, ensuring their integrity and an uneventful postoperative recovery. Figure 1 depicts the anatomical orientation of the lesion with surrounding neural structures. Histopathology confirmed MPE. En bloc resection with preservation of neurological function remains the mainstay of treatment for FT ependymoma. Understanding the transitional intradural FT-CM interface is essential, often precluding a clear filum stump superiorly while resecting MPE. Intraoperative neurophysiological monitoring is an indispensable adjunct to ensure safe en bloc resection. It is also theoretically possible to use tibial and pudendal sensory evoked potentials (SEPs) in this surgical procedure. However, the clinical utility of SEPs is limited in FT surgery compared with triggered EMG or transcranial motor evoked potentials because conventional SEPs from posterior tibial nerve of the lower extremity do not cover all the root levels at risk, and the change in SEPs cannot be immediately recognized (as SEPs are averaged responses, and there is always a time lag). We did not use pudendal SEPs in this study because SEPs may give information only on the sensory sacral pathway.6 Dermatomal SEPs may be helpful, but again, they provide only sensory information. Instead, we used triggered EMG for mapping the nerve roots and transcranial motor evoked potentials to monitor the motor tracts. Further, we used the bulbocavernosus reflex, an alternative and more precise technique to monitor both motor and sensory nervous pathways at the sacral root level. Moreover, SEPs are more difficult to monitor in very young children and are less relevant in guiding the surgical strategy. Thus, we used both mapping (triggered EMG) and monitoring (transcranial motor evoked potentials and bulbocavernosus reflex) techniques, which can preserve sensory and motor sacral roots in this surgical procedure.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…