• J Clin Monit Comput · Dec 2024

    Dynamic inflation prevents and standardized lung recruitment reverts volume loss associated with percutaneous tracheostomy during volume control ventilation: results from a Neuro-ICU population.

    • Luca Bastia, Roberta Garberi, Lorenzo Querci, Cristiana Cipolla, Francesco Curto, Emanuele Rezoagli, Roberto Fumagalli, and Arturo Chieregato.
    • Anesthesia and Intensive Care Unit, AUSL Romagna, M.Bufalini Hospital, Viale Ghirotti 286, Cesena, 47521, Italy. lucabastia8@gmail.com.
    • J Clin Monit Comput. 2024 Dec 1; 38 (6): 138713961387-1396.

    AbstractTo determine how percutaneous tracheostomy (PT) impacts on respiratory system compliance (Crs) and end-expiratory lung volume (EELV) during volume control ventilation and to test whether a recruitment maneuver (RM) at the end of PT may reverse lung derecruitment. This is a single center, prospective, applied physiology study. 25 patients with acute brain injury who underwent PT were studied. Patients were ventilated in volume control ventilation. Electrical impedance tomography (EIT) monitoring and respiratory mechanics measurements were performed in three steps: (a) baseline, (b) after PT, and (c) after a standardized RM (10 sighs of 30 cmH2O lasting 3 s each within 1 min). End-expiratory lung impedance (EELI) was used as a surrogate of EELV. PT determined a significant EELI loss (mean reduction of 432 arbitrary units p = 0.049) leading to a reduction in Crs (55 ± 13 vs. 62 ± 13 mL/cmH2O; p < 0.001) as compared to baseline. RM was able to revert EELI loss and restore Crs (68 ± 15 vs. 55 ± 13 mL/cmH2O; p < 0.001). In a subgroup of patients (N = 8, 31%), we observed a gradual but progressive increase in EELI. In this subgroup, patients did not experience a decrease of Crs after PT as compared to patients without dynamic inflation. Dynamic inflation did not cause hemodynamic impairment nor raising of intracranial pressure. We propose a novel and explorative hyperinflation risk index (HRI) formula. Volume control ventilation did not prevent the PT-induced lung derecruitment. RM could restore the baseline lung volume and mechanics. Dynamic inflation is common during PT, it can be monitored real-time by EIT and anticipated by HRI. The presence of dynamic inflation during PT may prevent lung derecruitment.© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.