• Journal of neurosurgery · Oct 2024

    An anatomo-functional study of the interactivity between the paracentral lobule and the primary motor cortex.

    • Yusuke Kimura, Shoto Yamada, Katsuya Komatsu, Rei Enatsu, Ryota Sato, Chie Kamada, Ayaka Sasagawa, Tsukasa Hirano, Masayasu Arihara, and Nobuhiro Mikuni.
    • Departments of1Neurosurgery and.
    • J. Neurosurg. 2024 Oct 1; 141 (4): 109611041096-1104.

    ObjectiveThe purpose of this study was to understand the anatomical and functional connections between the paracentral lobule (PCL) and the primary motor cortex (M1) of the human brain.MethodsThis retrospective study included 16 patients who underwent resection of lesions located near M1. Nine patients had lesions in the dominant hemisphere. Tractography was performed to visualize the connectivity between two regions of interest (ROIs)-the convexity and the interhemispheric fissure-that were shown by functional MRI to be activated during a finger tapping task. The number, mean length, and fractional anisotropy (FA) of the fibers between the ROIs were estimated. During surgery, subdural electrodes were placed on the brain surface, including the ROIs, using a navigation system. Cortico-cortical evoked potentials (CCEPs) were evoked by applying electrical stimuli to the hand region of M1 using electrodes placed on the convexity and were measured with electrodes placed on the interhemispheric fissure. To verify CCEP bidirectionality, electrical stimuli were applied to electrodes on the interhemispheric fissure that showed CCEP responses. Correlations of CCEP amplitudes and latencies with the number, mean length, and mean FA value obtained from tractography were determined. The correlations between these parameters and perioperative motor functions were also analyzed.ResultsFibers of 14 patients were visualized by diffusion tensor imaging (DTI). Unidirectional CCEPs between the PCL and M1 were measurable in all 16 patients, and bidirectional CCEPs between them were measurable in 14 patients. There was no significant difference between the two directions in the maximum CCEP amplitude or latency (amplitude, p = 0.391; latency, p = 0.583). Neither the amplitude nor latency showed any apparent correlation with the number, mean length, or mean FA value of the fibers obtained from tractography. Pre- and postoperative motor function of the hands was not significantly correlated with CCEP amplitude or latency. The number and mean FA value of fibers obtained by DTI, as well as the maximum CCEP amplitude, varied between patients.ConclusionsThis study demonstrated an anatomical connection and a bidirectional functional connection between the PCL, including the supplementary motor area, and M1 of the human brain. The observed variability between patients suggests possible motor function plasticity. These findings may serve as a foundation for further studies.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.