• Neurosurgery · May 2024

    Hybrid Clot Histomic-Transcriptomic Models Predict Functional Outcome After Mechanical Thrombectomy in Acute Ischemic Stroke.

    • Briana A Santo, Kerry E Poppenberg, Shiau-Sing K Ciecierska, Ammad A Baig, Kunal P Raygor, Tatsat R Patel, Munjal Shah, Elad I Levy, Adnan H Siddiqui, and Vincent M Tutino.
    • Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA.
    • Neurosurgery. 2024 May 29.

    Background And ObjectivesHistologic and transcriptomic analyses of retrieved stroke clots have identified features associated with patient outcomes. Previous studies have demonstrated the predictive capacity of histology or expression features in isolation. Few studies, however, have investigated how paired histologic image features and expression patterns from the retrieved clots can improve understanding of clot pathobiology and our ability to predict long-term prognosis. We hypothesized that computational models trained using clot histomics and mRNA expression can predict early neurological improvement (ENI) and 90-day functional outcome (modified Rankin Scale Score, mRS) better than models developed using histological composition or expression data alone.MethodsWe performed paired histological and transcriptomic analysis of 32 stroke clots. ENI was defined as a delta-National Institutes of Health Stroke Score/Scale > 4, and a good long-term outcome was defined as mRS ≤2 at 90 days after procedure. Clots were H&E-stained and whole-slide imaged at 40×. An established digital pathology pipeline was used to extract 237 histomic features and to compute clot percent composition (%Comp). When dichotomized by either the ENI or mRS thresholds, differentially expressed genes were identified as those with absolute fold-change >1.5 and q < 0.05. Machine learning with recursive feature elimination (RFE) was used to select clot features and evaluate computational models for outcome prognostication.ResultsFor ENI, RFE identified 9 optimal histologic and transcriptomic features for the hybrid model, which achieved an accuracy of 90.8% (area under the curve [AUC] = 0.98 ± 0.08) in testing and outperformed models based on histomics (AUC = 0.94 ± 0.09), transcriptomics (AUC = 0.86 ± 0.16), or %Comp (AUC = 0.70 ± 0.15) alone. For mRS, RFE identified 7 optimal histomic and transcriptomic features for the hybrid model. This model achieved an accuracy of 93.7% (AUC = 0.94 ± 0.09) in testing, also outperforming models based on histomics (AUC = 0.90 ± 0.11), transcriptomics (AUC = 0.55 ± 0.27), or %Comp (AUC = 0.58 ± 0.16) alone.ConclusionHybrid models offer improved outcome prognostication for patients with stroke. Identified digital histology and mRNA signatures warrant further investigation as biomarkers of patient functional outcome after thrombectomy.Copyright © Congress of Neurological Surgeons 2024. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.