-
- Palkin Arora, Apoorva Sharma, Richa Trivedi, Priyanka Sharma, Sankarsan Padhy, Shahnawaj Shah, Suman K Dutta, Kailash Manda, and Poonam Rana.
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi 110054, India.
- Mil Med. 2024 May 22.
IntroductionOccupational exposure to blast is a prevalent risk experienced by military personnel. While low-level exposure may not manifest immediate signs of illness, prolonged and repetitive exposure may result in neurophysiological dysfunction. Such repeated exposure to occupational blasts has been linked to structural and functional modifications in the brain, adversely affecting the performance of servicemen in the field. These neurological changes can give rise to symptoms resembling concussion and contribute to the development of post-traumatic stress disorder.Materials And MethodsTo understand long-term effects of blast exposure, the study was conducted to assess memory function, serum circulatory protein and lipid biomarkers, and associated concussive symptomology in servicemen. Concussion-like symptoms were assessed using the Rivermead Post-Concussion Symptoms Questionnaire (RPSQ) along with memory function using PGI memory scale. The serum protein biomarkers were quantified using a sandwich ELISA assay, and the serum lipid profile was measured using liquid chromatography-mass spectrometer.ResultsThe findings revealed that repeated low-level blast exposure resulted in impaired memory function, accompanied by elevated levels of serum neurofilament light chain (neuroaxonal injury) and C-reactive protein. Furthermore, alterations in the lipid profile were observed, with an increase in lipid species associated with immune activation. These changes collectively point to systemic inflammation, neuronal injury, and memory dysfunction as pathological characteristics of repeated low-level blast exposure.ConclusionThe results of our preliminary investigation offer valuable insights for further large-scale study and provide a guiding principle that necessitates a suitable mitigation approach to safeguard the health of personnel against blast overpressure.© The Association of Military Surgeons of the United States 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.