• Military medicine · Jun 2024

    Balance, Landing Biomechanics, and Functional Movement Screen Characteristics With and Without Knee Exoskeleton in Military Soldiers.

    • Takashi Nagai, David J Zeppetelli, Lucas C Sarantos, Caleb D Johnson, Charles Joseph B Borden, Cole A Dempsey, and Vanessa Ramirez.
    • Military Performance Division, United States Army Research Institute and Environmental Medicine, Natick, MA 01760, USA.
    • Mil Med. 2024 Jun 3.

    IntroductionA light-weight pneumatic-powered knee exoskeleton could augment mobility and lifting capabilities for a variety of occupational settings. However, added weight/bulkiness and artificially produced knee extension torque could compromise sensorimotor characteristics.Materials And MethodsTen healthy participants conducted 3 visits within 10 days to the biomechanics laboratory. Participants were asked to complete the following tasks on each visit: single-leg balance, single-leg drop-landing, and select functional movement tasks. Balance characteristics (the ground reaction forces variability and center-of-pressure velocity) were derived from force plates while knee flexion angles during drop-landing and functional movement tasks were captured using a motion capture system. Descriptive statistics as well as paired t-tests or Wilcoxon signed-rank tests were used to compare between conditions. Significance was set at P < .05 a priori.ResultsDuring single-leg balance, the ground reaction force variabilities were significantly increased (P = .013-.019) and the center of pressure velocity was decreased (P = .001-.017) when wearing knee exoskeleton. During single-leg drop-landing, the exoskeleton condition showed lower knee flexion angles at the initial contact (P = .004-.021) and peak (P = .006-.010). Additionally, the peak vertical ground reaction force was higher in the exoskeleton condition (P = .007). During functional movement tasks, the exoskeleton condition showed less knee flexion range-of-motion during the overhead squat (P = .007-.033) and hurdle step-over (P = .004-.005).ConclusionsParticipants exhibited stiffer landing technique with the exoskeleton. Given that these compromised sensorimotor characteristics have been associated with musculoskeletal injury risk, modifications to exoskeletons to promote softer landing and greater knee flexion range-of-motion during dynamic activities may be warranted.© The Association of Military Surgeons of the United States 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.