• Military medicine · Jun 2024

    Identifying and Reducing Insulin Errors in the Simulated Military Critical Care Air Transport Environment: A Human Factors Approach.

    • Lane L Frasier, Mark Cheney, Joshua Burkhardt, Mark Alderman, Eric Nelson, Melissa Proctor, Daniel Brown, William T Davis, Maia P Smith, and Richard Strilka.
    • Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA.
    • Mil Med. 2024 Jun 4.

    IntroductionDuring high-fidelity simulations in the Critical Care Air Transport (CCAT) Advanced course, we identified a high frequency of insulin medication errors and sought strategies to reduce them using a human factors approach.Materials And MethodsOf 169 eligible CCAT simulations, 22 were randomly selected for retrospective audio-video review to establish a baseline frequency of insulin medication errors. Using the Human Factors Analysis Classification System, dosing errors, defined as a physician ordering an inappropriate dose, were categorized as decision-based; administration errors, defined as a clinician preparing and administering a dose different than ordered, were categorized as skill-based. Next, 3 a priori interventions were developed to decrease the frequency of insulin medication errors, and these were grouped into 2 study arms. Arm 1 included a didactic session reviewing a sliding-scale insulin (SSI) dosing protocol and a hands-on exercise requiring all CCAT teams to practice preparing 10 units of insulin including a 2-person check. Arm 2 contained arm 1 interventions and added an SSI cognitive aid available to students during simulation. Frequency and type of insulin medication errors were collected for both arms with 93 simulations for arm 1 (January-August 2021) and 139 for arm 2 (August 2021-July 2022). The frequency of decision-based and skill-based errors was compared across control and intervention arms.ResultsBaseline insulin medication error rates were as follows: decision-based error occurred in 6/22 (27.3%) simulations and skill-based error occurred in 6/22 (27.3%). Five of the 6 skill-based errors resulted in administration of a 10-fold higher dose than ordered. The post-intervention decision-based error rates were 9/93 (9.7%) and 23/139 (2.2%), respectively, for arms 1 and 2. Compared to baseline error rates, both arm 1 (P = .04) and arm 2 (P < .001) had a significantly lower rate of decision-based errors. Additionally, arm 2 had a significantly lower decision-based error rate compared to arm 1 (P = .015). For skill-based preparation errors, 1/93 (1.1%) occurred in arm 1 and 4/139 (2.9%) occurred in arm 2. Compared to baseline, this represents a significant decrease in skill-based error in both arm 1 (P < .001) and arm 2 (P < .001). There were no significant differences in skill-based error between arms 1 and 2.ConclusionsThis study demonstrates the value of descriptive error analysis during high-fidelity simulation using audio-video review and effective risk mitigation using training and cognitive aids to reduce medication errors in CCAT. As demonstrated by post-intervention observations, a human factors approach successfully reduced decision-based error by using didactic training and cognitive aids and reduced skill-based error using hands-on training. We recommend the development of a Clinical Practice Guideline including an SSI protocol, guidelines for a 2-person check, and a cognitive aid for implementation with deployed CCAT teams. Furthermore, hands-on training for insulin preparation and administration should be incorporated into home station sustainment training to reduced medication errors in the operational environment.© The Association of Military Surgeons of the United States 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…