• World Neurosurg · Sep 2024

    A Predictive Model for Intraoperative CSF Leak During Endonasal Pituitary Adenoma Resection Using a Convolutional Neural Network.

    • Faraz Behzadi, Mohammad Alhusseini, Seunghyuk D Yang, Atul K Mallik, and Anand V Germanwala.
    • Department of Neurological Surgery, Loyola University Medical Center, Maywood, Illinois, USA.
    • World Neurosurg. 2024 Sep 1; 189: e324e330e324-e330.

    BackgroundCerebrospinal fluid (CSF) leak during endoscopic endonasal transsphenoidal surgery can lead to postoperative complications. The clinical and anatomic risk factors of intraoperative CSF leak are not well defined. We applied a two-dimensional (2D) convolutional neural network (CNN) machine learning model to identify risk factors from preoperative magnetic resonance imaging.MethodsAll adults who underwent endoscopic endonasal transsphenoidal surgery at our institution from January 2007 to March 2023 who had accessible preoperative stereotactic magnetic resonance imaging were included. A retrospective classic statistical analysis was performed to identify demographic, clinical, and anatomic risk factors of intraoperative CSF leak. Stereotactic T2-weighted brain magnetic resonance imaging scans were used to train and test a 2D CNN model.ResultsOf 220 included patients, 81 (36.8%) experienced intraoperative CSF leak. Among all preoperative variables, visual disturbance was the only statistically significant identified risk factor (P = 0.008). The trained 2D CNN model predicted CSF leak with 92% accuracy and area under receiver operating characteristic curve of 0.90 (sensitivity of 86% and specificity of 93%). Class activation mapping of this model revealed that anatomic regions of CSF flow were most important in predicting CSF leak.ConclusionsFurther review of the class activation mapping gradients revealed regions of the diaphragma sellae, clinoid processes, temporal horns, and optic nerves to have anatomic correlation to intraoperative CSF leak risk. Additionally, visual disturbances from anatomic compression of the optic chiasm were the only identified clinical risk factor. Our 2D CNN model can help a treating team to better anticipate and prepare for intraoperative CSF leak.Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.