• Military medicine · Jun 2024

    A Sex Comparison of the Physical and Physiological Demands of United States Marine Corps Recruit Training.

    • Bridget A McFadden, Harry P Cintineo, Alexa J Chandler, Gianna F Mastrofini, Caroline S Vincenty, Patrick Peterson, Mita Lovalekar, Bradley C Nindl, and Shawn M Arent.
    • Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA.
    • Mil Med. 2024 Jun 26; 189 (Supplement_2): 748374-83.

    IntroductionThe U.S. Marine Corps (USMC) recruit training is a 13-week preparatory period for military service men and women. Differences in absolute performance capabilities between sexes may impact physical and physiological responses to the demands of recruit training. The purpose of this study was to monitor U.S. Marine Corps recruits throughout recruit training to comparatively assess workload, sleep, stress, and performance responses in men and women.Materials And MethodsA total of 281 recruits (men = 182 and women = 99; age = 19 ± 2 years) were monitored and tested. Workload, sleep, and stress assessments occurred at week 2, week 7/8, and week 11 of training. Workload (energy expenditure per kg body mass [EEREL], distance [DIS], steps) and sleep (continuity and duration) were tracked over 72-hour periods using wearable accelerometry and heart rate technology. Stress responses were determined through salivary cortisol analyses. Performance testing, consisting of countermovement vertical jump (CMJ) and isometric mid-thigh pull (IMTP) performance relative to body mass, occurred at weeks 2 and 11. Linear mixed models were used to test for sex, time, and sex-by-time interactions (α < .05).ResultsOn average, recruits covered 13.0 ± 2.7 km/day, expended 3,762 ± 765 calories/day, and slept 6.2 ± 1.1 hours/night. Sex-by-time interactions were found for DIS, steps, sleep duration, cortisol, and CMJREL performance (P < .05). Planned contrasts revealed that men covered more DIS than women at week 7/8 (P < .001). Women experienced greater step counts compared to men at week 11 (P = .004). Women experienced no significant change in sleep duration (P > .05), whereas men increased sleep duration from week 2 to week 7/8 (P = .03). Women experienced greater sleep duration at week 2 (P = .03) and week 11 (P = .02) compared to men. Women exhibited higher cortisol levels than men at week 2 (P < .001) and week 11 (P < .001). Women experienced declines in cortisol at week 7 compared to week 2 (P < .001). Men experienced no changes in cortisol response at any timepoint (P > .05). Both sexes experienced declines in CMJREL from week 2 to week 11 (P > .001). Sex main effects were observed for EEREL, DIS, CMJREL, and IMTPREL (P < .05) with men experiencing greater overall workloads and producing greater strength and power metrics. Sex main effects were also found for sleep continuity and cortisol (P < .05), for which men experienced lower values compared to women. Time main effects were observed for EEREL, DIS, steps, cortisol, CMJREL, and IMTPREL (P < .05).ConclusionsThis study not only highlights the known sex differences between men and women but also sheds light on the different physical and physiological responses of each sex to military training. Interestingly, the greatest physical demands incurred earlier in the training cycle. Despite declining workloads, the stress response was maintained throughout the training, which may have implications for adaptation and performance. In addition, average sleep duration fell notably below recommendations for optimizing health and recovery. Effectively monitoring the demands and performance outcomes during recruit training is essential for determining individual fitness capabilities, as well as establishing the effectiveness of a training program. Individual performance assessments and adequately periodized workloads may help to optimize recruit training for both men and women.© The Association of Military Surgeons of the United States 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.