• Military medicine · Jun 2024

    United States Marine Corps Recruit Training Demands Associated With Performance Outcomes.

    • Bridget A McFadden, Harry P Cintineo, Alexa J Chandler, Patrick Peterson, Mita Lovalekar, Bradley C Nindl, and Shawn M Arent.
    • Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA.
    • Mil Med. 2024 Jun 26; 189 (Supplement_2): 849384-93.

    IntroductionUnited States Marine Corps' (USMC) recruit training is a 13-week program designed to maximize physical and mental performance adaptations. The purpose of this study was to evaluate the training demands and characteristics that are associated with performance outcomes during USMC recruit training.Materials And MethodsA total of 196 recruits (M = 97 and W = 99) were monitored and tested throughout training. Laboratory-based performance testing occurred at the start of weeks 2 and 11 and consisted of body mass assessments, countermovement vertical jump, and isometric mid-thigh pull. Military-specific performance testing occurred twice within the first 8 weeks of training and included the physical fitness test (PFT) and combat fitness test (CFT) implemented by the USMC. Resilience data were collected at week 2 using the Connor-Davidson Resilience Scale. Workload, sleep, and stress responses were monitored at weeks 2, 7, and 11. Recruits were provided with a wearable tracking device which utilized heart rate and accelerometry-based technology to determine energy expenditure (EE), distances (DIS), and sleep metrics. Data were averaged over a 3-day period. Salivary cortisol testing occurred at the start of each monitoring week. Change scores were calculated for performance tests, and body mass was calculated from data obtained at week 2 to week 11. Area under the curve was calculated for the workload, sleep metrics, and cortisol responses using the trapezoidal method. Pearson product-moment correlations (r) were used to assess the relationships between training demands and performance. An α level of 0.05 was used to establish significance.ResultsA moderate positive correlation was found between changes in body mass and peak power (P < .001; r = 0.43). Weak positive correlations were found between changes in body mass and peak force (P = .002; r = 0.28), as well as body mass and resilience (P = .03; r = 0.19). A moderate negative correlation was observed between changes in body mass and PFT (P < .001; r = -0.49). A weak negative correlation was found between changes in body mass and EE (P = .003; r = -0.24). A weak negative correlation was found between changes in peak power and EE (P = .001; r = -0.29). A weak positive correlation was found between changes in peak power and changes in CFT (P = .05; r = 0.19) A weak negative correlation was found between changes in sleep continuity and CFT (P = .02; r = -0.20). A weak negative correlation was found between cortisol and changes in PFT (P = .05; r = -0.20). A weak negative correlation was found between cortisol and both EE (P = .001; r = -0.27) and DIS (P = .045; r = -0.16). A weak negative correlation was found between EE and sleep continuity (P < .001; r = -0.34). Weak negative correlations were found between sleep duration and both DIS (P = .01; r = -0.18) and steps (P = .003; r = -0.21).ConclusionsIncreases in body mass throughout training were positively associated with strength and power changes, but negatively related to PFT scores. Changes in peak power related to improvements in CFT scores; however, higher workloads (i.e., EE) were negatively associated with peak power. The identification of the USMC physical and physiological training demands that are associated with performance outcomes may be a valuable resource to guide conditioning efforts to boost military readiness.© The Association of Military Surgeons of the United States 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…