• Injury · Aug 2024

    Comparative Study

    Prediction of mortality among severely injured trauma patients A comparison between TRISS and machine learning-based predictive models.

    • Jonas Holtenius, Mathias Mosfeldt, Anders Enocson, and Hans E Berg.
    • Department of Clinical Science, Intervention and Technology, Karolinska Institute, 14152 Stockholm, Sweden; Department of Trauma, Acute Surgery and Orthopaedics, Karolinska University Hospital, 17177 Stockholm, Sweden. Electronic address: jonas.holtenius@regionstockholm.se.
    • Injury. 2024 Aug 1; 55 (8): 111702111702.

    BackgroundGiven the huge impact of trauma on hospital systems around the world, several attempts have been made to develop predictive models for the outcomes of trauma victims. The most used, and in many studies most accurate predictive model, is the "Trauma Score and Injury Severity Score" (TRISS). Although it has proven to be fairly accurate and is widely used, it has faced criticism for its inability to classify more complex cases. In this study, we aimed to develop machine learning models that better than TRISS could predict mortality among severely injured trauma patients, something that has not been studied using data from a nationwide register before.MethodsPatient data was collected from the national trauma register in Sweden, SweTrau. The studied period was from the 1st of January 2015 to 31st of December 2019. After feature selection and multiple imputation of missing data three machine learning (ML) methods (Random Forest, eXtreme Gradient Boosting, and a Generalized Linear Model) were used to create predictive models. The ML models and TRISS were then tested on predictive ability for 30-day mortality.ResultsThe ML models were well-calibrated and outperformed TRISS in all the tested measurements. Among the ML models, the eXtreme Gradient Boosting model performed best with an AUC of 0.91 (0.88-0.93).ConclusionThis study showed that all the developed ML-based prediction models were superior to TRISS for the prediction of trauma mortality.Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.