-
- Sophie Meakin and Sebastian Funk.
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London, WC1E 7HT, UK. sophiemeakin@outlook.com.
- Bmc Med. 2024 Apr 17; 22 (1): 163163.
BackgroundDefining healthcare facility catchment areas is a key step in predicting future healthcare demand in epidemic settings. Forecasts of hospitalisations can be informed by leading indicators measured at the community level. However, this relies on the definition of so-called catchment areas or the geographies whose populations make up the patients admitted to a given hospital, which are often not well-defined. Little work has been done to quantify the impact of hospital catchment area definitions on healthcare demand forecasting.MethodsWe made forecasts of local-level hospital admissions using a scaled convolution of local cases (as defined by the hospital catchment area) and delay distribution. Hospital catchment area definitions were derived from either simple heuristics (in which people are admitted to their nearest hospital or any nearby hospital) or historical admissions data (all emergency or elective admissions in 2019, or COVID-19 admissions), plus a marginal baseline definition based on the distribution of all hospital admissions. We evaluated predictive performance using each hospital catchment area definition using the weighted interval score and considered how this changed by the length of the predictive horizon, the date on which the forecast was made, and by location. We also considered the change, if any, in the relative performance of each definition in retrospective vs. real-time settings, or at different spatial scales.ResultsThe choice of hospital catchment area definition affected the accuracy of hospital admission forecasts. The definition based on COVID-19 admissions data resulted in the most accurate forecasts at both a 7- and 14-day horizon and was one of the top two best-performing definitions across forecast dates and locations. The "nearby" heuristic also performed well, but less consistently than the COVID-19 data definition. The marginal distribution baseline, which did not include any spatial information, was the lowest-ranked definition. The relative performance of the definitions was larger when using case forecasts compared to future observed cases. All results were consistent across spatial scales of the catchment area definitions.ConclusionsUsing catchment area definitions derived from context-specific data can improve local-level hospital admission forecasts. Where context-specific data is not available, using catchment areas defined by carefully chosen heuristics is a sufficiently good substitute. There is clear value in understanding what drives local admissions patterns, and further research is needed to understand the impact of different catchment area definitions on forecast performance where case trends are more heterogeneous.© 2024. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.