• Shock · Aug 2024

    GDF11 OVEREXPRESSION ALLEVIATES SEPSIS-INDUCED LUNG MICROVASCULAR ENDOTHELIAL BARRIER DAMAGE BY ACTIVATING SIRT1/NOX4 SIGNALING TO INHIBIT FERROPTOSIS.

    • Zhixiang Wu, Qiong Xi, Qin Zhao, and Shan Zhu.
    • Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
    • Shock. 2024 Aug 1; 62 (2): 245254245-254.

    AbstractSepsis is a lethal clinical syndrome, and acute lung injury (ALI) is the earliest and most serious complication. We aimed to explore the role of growth differentiation factor 11 (GDF11) in sepsis-induced dysfunction of lung microvascular endothelial barrier in vivo and in vitro to elucidate its potential mechanism related to sirtuin 1 (SIRT1)/NADPH oxidase 4 (NOX4) signaling. Cecal ligation and puncture (CLP)-induced sepsis mice and lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cells (PMECs) were used in this study. Histopathological changes in lung tissues were tested by hematoxylin-eosin staining. Lung wet-to-dry weight ratio and inflammatory factors contents in bronchoalveolar lavage fluid were assessed. Evens blue index, trans-epithelial electrical resistance, and expression of zona occludens 1 (ZO-1), occludin-1, and claudin-1 were used to evaluate alveolar barrier integrity. Reactive oxygen species, lipid peroxidation, and ferroptosis markers were analyzed. Iron deposition in the lung tissues was assessed using Prussian blue staining. Intracellular Fe 2+ level was detected using FerroOrange staining. Additionally, expression of GDF11, SIRT1, and NOX4 was estimated with western blot. Then, EX527, a SIRT1 inhibitor, was employed to treat GDF11-overexpressed PMECs with LPS stimulation to clarify the regulatory mechanism. Results showed that GDF11 overexpression attenuated sepsis-induced pathological changes and inflammation and maintained alveolar barrier integrity. Moreover, GDF11 overexpression inhibited ferroptosis, upregulated SIRT1 expression and downregulated NOX4 expression. Additionally, EX527 treatment relieved the impacts of GDF11 overexpression on ferroptosis and destruction of integrity of human pulmonary microvascular endothelial cells exposed to LPS. Taken together, GDF11 overexpression could alleviate sepsis-induced lung microvascular endothelial barrier damage by activating SIRT1/NOX4 signaling to inhibit ferroptosis. Our findings potentially provide new molecular target for clinical therapy of ALI.Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Shock Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.