-
Ann Acad Med Singap · Dec 2023
An augmented reality mobile application for weight estimation in paediatric patients: A prospective single-blinded cross-sectional study.
- Sangun Nah, Sungwoo Choi, Nayeon Kang, Kyung Yoon Bae, Ye Rim Kim, Minsol Kim, Ji Eun Moon, and Sangsoo Han.
- Department of Emergency Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea.
- Ann Acad Med Singap. 2023 Dec 28; 52 (12): 660668660-668.
IntroductionDetermining the exact weight of children is a challenging task during emergency situations. Current guidelines recommend the use of length-based weight-estimating tapes. However, healthcare providers must either always carry the tapes or take time to locate them. Moreover, they may not know how to use them. To address these issues, we developed an augmented reality smartphone application for length-based weight estimation called the Paediatric Augmented Reality Scale (PARS). We evaluated its performance and compared it to that of the Broselow tape (BT) and Paediatric Advanced Weight Prediction in the Emergency Room extra-long and extra-large (PAWPER-XL) tape methods.MethodA prospective, single-blinded cross-sectional study was conducted with children aged 1 month to 12 years who visited the emergency department of the tertiary university hospital in Bucheon, South Korea between July 2021 and February 2022. This study aimed to evaluate the measurement agreement and performance of 3 methods: BT, PAWPER-XL and PARS.ResultsIn all, 1090 participants were enrolled, and 639 (58.6%) were male. The mean age of the participants was 4.1 ± 2.8 years, with a mean height of 102.7 ± 21.7 cm and mean weight of 18.8 ± 9.5 kg. Compared to BT and PAWPER-XL, PARS exhibited lower mean absolute percentage error (9.60%) and root mean square percentage error (3.02%). PARS achieved a higher proportion of weights estimated within 10% of the actual weight (63.21%), outperform-ing BT (57.25%) and PAWPER-XL (62.47%). The intraclass correlation coefficients for the actual and estimated weights of BT, PAWPER-XL and PARS were 0.952, 0.969 and 0.973, respectively (P<0.001).ConclusionPARS exhibited a modestly better performance than BT and PAWPER-XL in estimating body weight. PARS-estimated body weights correlated fairly accurately with the actual body weights. PARS holds potential utility in paediatric emergencies.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.