-
- Yukun Li, Xiaoying Liu, Wenhe Lv, Xuesi Wang, Zhuohang Du, Xinmeng Liu, Fanchao Meng, Shuqi Jin, Songnan Wen, Rong Bai, Nian Liu, and Ribo Tang.
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100012, China.
- Bmc Med. 2024 Jun 26; 22 (1): 269269.
BackgroundIn the USA, the prolonged effective survival of cancer population has brought significant attention to the rising risk of cardiometabolic morbidity and mortality in this population. This heightened risk underscores the urgent need for research into effective pharmacological interventions for cancer survivors. Notably, metformin, a well-known metabolic regulator with pleiotropic effects, has shown protective effects against cardiometabolic disorders in diabetic individuals. Despite these promising indications, evidence supporting its efficacy in improving cardiometabolic outcomes in cancer survivors remains scarce.MethodsA prospective cohort was established using a nationally representative sample of cancer survivors enrolled in the US National Health and Nutrition Examination Survey (NHANES), spanning 2003 to 2018. Outcomes were derived from patient interviews, physical examinations, and public-access linked mortality archives up to 2019. The Oxidative Balance Score was utilized to assess participants' levels of oxidative stress. To evaluate the correlations between metformin use and the risk of cardiometabolic diseases and related mortality, survival analysis of cardiometabolic mortality was performed by Cox proportional hazards model, and cross-sectional analysis of cardiometabolic diseases outcomes was performed using logistic regression models. Interaction analyses were conducted to explore the specific pharmacological mechanism of metformin.ResultsAmong 3995 cancer survivors (weighted population, 21,671,061, weighted mean [SE] age, 62.62 [0.33] years; 2119 [53.04%] females; 2727 [68.26%] Non-Hispanic White individuals), 448 reported metformin usage. During the follow-up period of up to 17 years (median, 6.42 years), there were 1233 recorded deaths, including 481 deaths from cardiometabolic causes. Multivariable models indicated that metformin use was associated with a lower risk of all-cause (hazard ratio [HR], 0.62; 95% confidence interval [CI], 0.47-0.81) and cardiometabolic (HR, 0.65; 95% CI, 0.44-0.97) mortality compared with metformin nonusers. Metformin use was also correlated with a lower risk of total cardiovascular disease (odds ratio [OR], 0.41; 95% CI, 0.28-0.59), stroke (OR, 0.44; 95% CI, 0.26-0.74), hypertension (OR, 0.27; 95% CI, 0.14-0.52), and coronary heart disease (OR, 0.41; 95% CI, 0.21-0.78). The observed inverse associations were consistent across subgroup analyses in four specific cancer populations identified as cardiometabolic high-risk groups. Interaction analyses suggested that metformin use as compared to non-use may counter-balance oxidative stress.ConclusionsIn this cohort study involving a nationally representative population of US cancer survivors, metformin use was significantly correlated with a lower risk of cardiometabolic diseases, all-cause mortality, and cardiometabolic mortality.© 2024. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.