• Neuromodulation · Jul 2024

    Non-invasive Transcutaneous Spinal Cord Stimulation Programming Recommendations for the Treatment of Upper Extremity Impairment in Tetraplegia.

    • Kristen Gelenitis, Andrea Santamaria, Jared Pradarelli, Markus Rieger, Fatma Inanici, Candace Tefertiller, Edelle Field-Fote, James Guest, Jenny Suggitt, Amanda Turner, Jessica M D'Amico, and Chet Moritz.
    • ONWARD Medical, Lausanne, Switzerland.
    • Neuromodulation. 2024 Jul 2.

    ObjectivesThis study analyzes the stimulation parameters implemented during two successful trials that used non-invasive transcutaneous spinal cord stimulation (tSCS) to effectively improve upper extremity function after chronic spinal cord injury (SCI). It proposes a framework to guide stimulation programming decisions for the successful translation of these techniques into the clinic.Materials And MethodsProgramming data from 60 participants who completed the Up-LIFT trial and from 17 participants who subsequently completed the LIFT Home trial were analyzed. All observations of stimulation amplitudes, frequencies, waveforms, and electrode configurations were examined. The incidence of adverse events and relatedness to stimulation parameters is reported. A comparison of parameter usage across the American Spinal Injury Association Impairment Scale (AIS) subgroups was conducted to evaluate stimulation strategies across participants with varying degrees of sensorimotor preservation.ResultsActive (cathodal) electrodes were typically placed between the C3/C4 and C6/C7 spinous processes. Most sessions featured return (anodal) electrodes positioned bilaterally over the anterior superior iliac spine, although clavicular placement was frequently used by 12 participants. Stimulation was delivered with a 10-kHz carrier frequency and typically a 30-Hz burst frequency. Biphasic waveforms were used in 83% of sessions. Average stimulation amplitudes were higher for biphasic waveforms. The AIS B subgroup required significantly higher amplitudes than did the AIS C and D subgroups. Device-related adverse events were infrequent, and not correlated with specific waveforms or amplitudes. Within the home setting, participants maintained their current amplitudes within 1% of the preset values. The suggested stimulation programming framework dictates the following hierarchical order of parameter adjustments: current amplitude, waveform type, active/return electrode positioning, and burst frequency, guided by clinical observations as required.ConclusionsThis analysis summarizes effective stimulation parameters from the trials and provides a decision-making framework for clinical implementation of tSCS for upper extremity functional restoration after SCI. The parameters are aligned with existing literature and proved safe and well tolerated by participants.Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.