-
- Michael R Fettiplace, Kathleen F Vincent, Angel Cho, Emmaline Dillon, Brendan M Stapley, Victoria Stewart, and Ken Solt.
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA. Electronic address: fettiplace@gmail.com.
- Br J Anaesth. 2024 Oct 1; 133 (4): 793803793-803.
BackgroundDopaminergic psychostimulants can restore arousal in anaesthetised animals, and dopaminergic signalling contributes to hippocampal-dependent memory formation. We tested the hypothesis that dopaminergic psychostimulants can antagonise the amnestic effects of isoflurane on visuospatial working memory.MethodsSixteen adult Sprague-Dawley rats were trained on a trial-unique nonmatching-to-location (TUNL) task which assessed the ability to identify a novel touchscreen location after a fixed delay. Once trained, the effects of low-dose isoflurane (0.3 vol%) on task performance and activity, assessed by infrared beam breaks, were assessed. We attempted to rescue deficits in performance and activity with a dopamine D1 receptor agonist (chloro-APB), a noradrenergic reuptake inhibitor (atomoxetine), and a mixed dopamine/norepinephrine releasing agent (dextroamphetamine). Anaesthetic induction, emergence, and recovery from anaesthesia were also investigated.ResultsLow-dose isoflurane impaired working memory in a sex-independent and intra-trial delay-independent manner as assessed by task performance, and caused an overall reduction in activity. Administration of chloro-APB, atomoxetine, or dextroamphetamine did not restore visuospatial working memory, but chloro-APB and dextroamphetamine recovered arousal to levels observed in the baseline awake state. Performance did not differ between induction and emergence. Animals recovered to baseline performance within 15 min of discontinuing isoflurane.ConclusionsLow-dose isoflurane impairs visuospatial working memory in a nondurable and delay-independent manner that potentially implicates non-hippocampal structures in isoflurane-induced memory deficits. Dopaminergic psychostimulants counteracted sedation but did not reverse memory impairments, suggesting that isoflurane-induced amnesia and isoflurane-induced sedation have distinct underlying mechanisms that can be antagonised independently.Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.