• Kidney international · Sep 2005

    Review

    Obstructive nephropathy: insights from genetically engineered animals.

    • Jean-Loup Bascands and Joost P Schanstra.
    • Inserm U388, Institut Louis Bugnard, Touluse cedex, France.
    • Kidney Int. 2005 Sep 1;68(3):925-37.

    AbstractCongenital obstructive nephropathy is the primary cause for end-stage renal disease (ESRD) in children. An increasingly used animal model of obstructive nephropathy is unilateral ureteral obstruction (UUO). This model mimics, in an accelerated manner, the different stages of obstructive nephropathy leading to tubulointerstitial fibrosis: cellular infiltration, tubular proliferation and apoptosis, epithelial-mesenchymal transition (EMT), (myo)fibroblast accumulation, increased extracellular matrix (ECM) deposition, and tubular atrophy. During the last decade genetically modified animals are increasingly used to study the development of obstructive nephropathy. Although the use of these animals (mainly knockouts) has highlighted some pitfalls of this approach (compensation by closely related gene products, absence of temporal knockouts) it has brought important information about the role of specific gene-products in the pathogenesis of obstructive nephropathy. Besides confirming the important pathologic role for angiotensin II (Ang II) and transforming growth factor-beta (TGF-beta) in obstructive nephropathy, these animals have shown the complexity of the development of tubulointerstitial fibrosis involving a large number of closely functionally related molecules. More interestingly, the use of these animals has led to the discovery of unexpected and contradictory roles (both potentially pro- and antifibrotic) for Ang II, for ECM degrading enzymes matrix metalloproteinase 9 (MMP-9) and tissue plasminogen activators (PAs), for plasminogen activator inhibitor 1 (PAI-1), and for the adhesion molecule osteopontin (OPN) in obstructive nephropathy. Further use of these animals, especially in combination with pharmacologic tools, should help to better identify potential antifibrotic strategies in obstructive nephropathy.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.