• Am. J. Respir. Crit. Care Med. · Dec 2024

    Randomized Controlled Trial

    Pyrazinamide Safety, Efficacy, and Dosing for Treating Drug-Susceptible Pulmonary Tuberculosis: A Phase 3, Randomized, Controlled Clinical Trial.

    • Ava Y Xu, Gustavo E Velásquez, Nan Zhang, Vincent K Chang, PhillipsPatrick P JPPJ0000-0002-6336-7024UCSF Center for Tuberculosis.Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California., Payam Nahid, Susan E Dorman, Ekaterina V Kurbatova, William C Whitworth, Erin Sizemore, Kia Bryant, Wendy Carr, Nicole E Brown, Melissa L Engle, Nguyen Viet Nhung, Pheona Nsubuga, Andreas Diacon, Kelly E Dooley, Richard E Chaisson, Susan Swindells, and Radojka M Savic.
    • Department of Bioengineering and Therapeutic Sciences.
    • Am. J. Respir. Crit. Care Med. 2024 Dec 1; 210 (11): 135813691358-1369.

    AbstractRationale: Optimizing pyrazinamide dosing is critical to improve treatment efficacy while minimizing toxicity during tuberculosis treatment. Study 31/AIDS Clinical Trials Group A5349 represents the largest phase 3 randomized controlled therapeutic trial to date for such an investigation. Objectives: We sought to report pyrazinamide pharmacokinetic parameters, risk factors for lower pyrazinamide exposure, and relationships between pyrazinamide exposure and efficacy and safety outcomes. We aimed to determine pyrazinamide dosing strategies that optimize risks and benefits. Methods: We analyzed pyrazinamide steady-state pharmacokinetic data using population nonlinear mixed-effects models. We evaluated the contribution of pyrazinamide exposure to long-term efficacy using parametric time-to-event models and safety outcomes using logistic regression. We evaluated optimal dosing with therapeutic windows targeting ≥95% durable cure and safety within the observed proportion of the primary safety outcome. Measurements and Main Results: Among 2,255 participants with 6,978 plasma samples, pyrazinamide displayed sevenfold exposure variability (151-1,053 mg·h/L). Body weight was not a clinically relevant predictor of drug clearance and thus did not justify the need for weight-banded dosing. Both clinical and safety outcomes were associated with pyrazinamide exposure, resulting in therapeutic windows of 231-355 mg · h/L for the control and 226-349 mg·h/L for the rifapentine-moxifloxacin regimen. Flat dosing of pyrazinamide at 1,000 mg would have permitted an additional 13.1% (n = 96) of participants allocated to the control and 9.2% (n = 70) to the rifapentine-moxifloxacin regimen dosed within the therapeutic window, compared with the current weight-banded dosing. Conclusions: Flat dosing of pyrazinamide at 1,000 mg/d would be readily implementable and could optimize treatment outcomes in drug-susceptible tuberculosis. Clinical trial registered with www.clinicaltrials.gov (NCT02410772).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.