• BMC anesthesiology · Jul 2024

    Construction and validation of a risk prediction model for postoperative ICU admission in patients with colorectal cancer: clinical prediction model study.

    • Lu Wang, Yanan Wu, Liqin Deng, Xiaoxia Tian, and Junyang Ma.
    • Department of Anesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, China.
    • BMC Anesthesiol. 2024 Jul 4; 24 (1): 222222.

    BackgroundTransfer to the ICU is common following non-cardiac surgeries, including radical colorectal cancer (CRC) resection. Understanding the judicious utilization of costly ICU medical resources and supportive postoperative care is crucial. This study aimed to construct and validate a nomogram for predicting the need for mandatory ICU admission immediately following radical CRC resection.MethodsRetrospective analysis was conducted on data from 1003 patients who underwent radical or palliative surgery for CRC at Ningxia Medical University General Hospital from August 2020 to April 2022. Patients were randomly assigned to training and validation cohorts in a 7:3 ratio. Independent predictors were identified using the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression in the training cohort to construct the nomogram. An online prediction tool was developed for clinical use. The nomogram's calibration and discriminative performance were assessed in both cohorts, and its clinical utility was evaluated through decision curve analysis (DCA).ResultsThe final predictive model comprised age (P = 0.003, odds ratio [OR] 3.623, 95% confidence interval [CI] 1.535-8.551); nutritional risk screening 2002 (NRS2002) (P = 0.000, OR 6.129, 95% CI 2.920-12.863); serum albumin (ALB) (P = 0.013, OR 0.921, 95% CI 0.863-0.982); atrial fibrillation (P = 0.000, OR 20.017, 95% CI 4.191-95.609); chronic obstructive pulmonary disease (COPD) (P = 0.009, OR 8.151, 95% CI 1.674-39.676); forced expiratory volume in 1 s / Forced vital capacity (FEV1/FVC) (P = 0.040, OR 0.966, 95% CI 0.935-0.998); and surgical method (P = 0.024, OR 0.425, 95% CI 0.202-0.891). The area under the curve was 0.865, and the consistency index was 0.367. The Hosmer-Lemeshow test indicated excellent model fit (P = 0.367). The calibration curve closely approximated the ideal diagonal line. DCA showed a significant net benefit of the predictive model for postoperative ICU admission.ConclusionPredictors of ICU admission following radical CRC resection include age, preoperative serum albumin level, nutritional risk screening, atrial fibrillation, COPD, FEV1/FVC, and surgical route. The predictive nomogram and online tool support clinical decision-making for postoperative ICU admission in patients undergoing radical CRC surgery.Trial RegistrationDespite the retrospective nature of this study, we have proactively registered it with the Chinese Clinical Trial Registry. The registration number is ChiCTR2200062210, and the date of registration is 29/07/2022.© 2024. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.