• Eur Spine J · Aug 2024

    Development and validation of a predictive model for vertebral fracture risk in osteoporosis patients.

    • Jun Zhang, Liang Xia, Xueli Zhang, Jiayi Liu, Jun Tang, Jianguo Xia, Yongkang Liu, Weixiao Zhang, Zhipeng Liang, Guangyu Tang, and Lin Zhang.
    • Department of Radiology, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China.
    • Eur Spine J. 2024 Aug 1; 33 (8): 324232603242-3260.

    ObjectiveThis study aimed to develop and validate a predictive model for osteoporotic vertebral fractures (OVFs) risk by integrating demographic, bone mineral density (BMD), CT imaging, and deep learning radiomics features from CT images.MethodsA total of 169 osteoporosis-diagnosed patients from three hospitals were randomly split into OVFs (n = 77) and Non-OVFs (n = 92) groups for training (n = 135) and test (n = 34). Demographic data, BMD, and CT imaging details were collected. Deep transfer learning (DTL) using ResNet-50 and radiomics features were fused, with the best model chosen via logistic regression. Cox proportional hazards models identified clinical factors. Three models were constructed: clinical, radiomics-DTL, and fusion (clinical-radiomics-DTL). Performance was assessed using AUC, C-index, Kaplan-Meier, and calibration curves. The best model was depicted as a nomogram, and clinical utility was evaluated using decision curve analysis (DCA).ResultsBMD, CT values of paravertebral muscles (PVM), and paravertebral muscles' cross-sectional area (CSA) significantly differed between OVFs and Non-OVFs groups (P < 0.05). No significant differences were found between training and test cohort. Multivariate Cox models identified BMD, CT values of PVM, and CSAPS reduction as independent OVFs risk factors (P < 0.05). The fusion model exhibited the highest predictive performance (C-index: 0.839 in training, 0.795 in test). DCA confirmed the nomogram's utility in OVFs risk prediction.ConclusionThis study presents a robust predictive model for OVFs risk, integrating BMD, CT data, and radiomics-DTL features, offering high sensitivity and specificity. The model's visualizations can inform OVFs prevention and treatment strategies.© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.