• Spine · Sep 2024

    Interpretable Machine Learning Models Based on SHapley Additive exPlanations for Predicting the Risk of Cerebrospinal Fluid Leakage in Lumbar Fusion Surgery.

    • ZongJie Guo, PeiYang Wang, SuHui Ye, HaoYu Li, JunPing Bao, Rui Shi, Shu Yang, Rui Yin, and XiaoTao Wu.
    • Spine Surgery Center, Department of Spine Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, People's Republic of China.
    • Spine. 2024 Sep 15; 49 (18): 128112931281-1293.

    Study DesignRetrospective study.ObjectivesThe objective of this investigation was to formulate and internally verify a customized machine learning (ML) framework for forecasting cerebrospinal fluid leakage (CSFL) in lumbar fusion surgery. This was accomplished by integrating imaging parameters and using the SHapley Additive exPlanation (SHAP) technique to elucidate the interpretability of the model.Summary Of Background DataGiven the increasing incidence and surgical volume of spinal degeneration worldwide, accurate predictions of postoperative complications are urgently needed. SHAP-based interpretable ML models have not been used for CSFL risk factor analysis in lumbar fusion surgery.MethodsClinical and imaging data were retrospectively collected from 3505 patients who underwent lumbar fusion surgery. Six distinct machine learning models were formulated: extreme gradient boosting (XGBoost), decision tree (DT), random forest (RF), support vector machine (SVM), Gaussian naive Bayes (GaussianNB), and K-nearest neighbors (KNN) models. Evaluation of model performance on the test dataset was performed using performance metrics, and the analysis was executed through the SHAP framework.ResultsCSFL was detected in 95 (2.71%) of 3505 patients. Notably, the XGBoost model exhibited outstanding accuracy in forecasting CSFLs, with high precision (0.9815), recall (0.6667), accuracy (0.8182), F1 score (0.7347), and AUC (0.7343). In addition, through SHAP analysis, significant predictors of CSFL were identified, including ligamentum flavum thickness, zygapophysial joint degeneration grade, central spinal stenosis grade, decompression segment count, decompression mode, intervertebral height difference, Cobb angle, intervertebral height index difference, operation mode, lumbar segment lordosis angle difference, Meyerding grade of lumbar spondylolisthesis, and revision surgery.ConclusionsThe combination of the XGBoost model with the SHAP is an effective tool for predicting the risk of CSFL during lumbar fusion surgery. Its implementation could aid clinicians in making informed decisions, potentially enhancing patient outcomes and lowering healthcare expenses. This study advocates for the adoption of this approach in clinical settings to enhance the evaluation of CSFL risk among patients undergoing lumbar fusion.Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.