• The lancet oncology · Aug 2024

    Observational Study

    Interpretable artificial intelligence to optimise use of imatinib after resection in patients with localised gastrointestinal stromal tumours: an observational cohort study.

    • Dimitris Bertsimas, Georgios Antonios Margonis, Suleeporn Sujichantararat, Angelos Koulouras, Yu Ma, Cristina R Antonescu, Murray F Brennan, Javier Martín-Broto, Seehanah Tang, Piotr Rutkowski, Martin E Kreis, Katharina Beyer, Jane Wang, Elzbieta Bylina, Pawel Sobczuk, Antonio Gutierrez, Bhumika Jadeja, William D Tap, Ping Chi, and Samuel Singer.
    • Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
    • Lancet Oncol. 2024 Aug 1; 25 (8): 102510371025-1037.

    BackgroundCurrent guidelines recommend use of adjuvant imatinib therapy for many patients with gastrointestinal stromal tumours (GISTs); however, its optimal treatment duration is unknown and some patient groups do not benefit from the therapy. We aimed to apply state-of-the-art, interpretable artificial intelligence (ie, predictions or prescription logic that can be easily understood) methods on real-world data to establish which groups of patients with GISTs should receive adjuvant imatinib, its optimal treatment duration, and the benefits conferred by this therapy.MethodsIn this observational cohort study, we considered for inclusion all patients who underwent resection of primary, non-metastatic GISTs at the Memorial Sloan Kettering Cancer Center (MSKCC; New York, NY, USA) between Oct 1, 1982, and Dec 31, 2017, and who were classified as intermediate or high risk according to the Armed Forces Institute of Pathology Miettinen criteria and had complete follow-up data with no missing entries. A counterfactual random forest model, which used predictors of recurrence (mitotic count, tumour size, and tumour site) and imatinib duration to infer the probability of recurrence at 7 years for a given patient under each duration of imatinib treatment, was trained in the MSKCC cohort. Optimal policy trees (OPTs), a state-of-the-art interpretable AI-based method, were used to read the counterfactual random forest model by training a decision tree with the counterfactual predictions. The OPT recommendations were externally validated in two cohorts of patients from Poland (the Polish Clinical GIST Registry), who underwent GIST resection between Dec 1, 1981, and Dec 31, 2011, and from Spain (the Spanish Group for Research in Sarcomas), who underwent resection between Oct 1, 1987, and Jan 30, 2011.FindingsAmong 1007 patients who underwent GIST surgery in MSKCC, 117 were included in the internal cohort; for the external cohorts, the Polish cohort comprised 363 patients and the Spanish cohort comprised 239 patients. The OPT did not recommend imatinib for patients with GISTs of gastric origin measuring less than 15·9 cm with a mitotic count of less than 11·5 mitoses per 5 mm2 or for those with small GISTs (<5·4 cm) of any site with a count of less than 11·5 mitoses per 5 mm2. In this cohort, the OPT cutoffs had a sensitivity of 92·7% (95% CI 82·4-98·0) and a specificity of 33·9% (22·3-47·0). The application of these cutoffs in the two external cohorts would have spared 38 (29%) of 131 patients in the Spanish cohort and 44 (35%) of 126 patients in the Polish cohort from unnecessary treatment with imatinib. Meanwhile, the risk of undertreating patients in these cohorts was minimal (sensitivity 95·4% [95% CI 89·5-98·5] in the Spanish cohort and 92·4% [88·3-95·4] in the Polish cohort). The OPT tested 33 different durations of imatinib treatment (<5 years) and found that 5 years of treatment conferred the most benefit.InterpretationIf the identified patient subgroups were applied in clinical practice, as many as a third of the current cohort of candidates who do not benefit from adjuvant imatinib would be encouraged to not receive imatinib, subsequently avoiding unnecessary toxicity on patients and financial strain on health-care systems. Our finding that 5 years is the optimal duration of imatinib treatment could be the best source of evidence to inform clinical practice until 2028, when a randomised controlled trial with the same aims is expected to report its findings.FundingNational Cancer Institute.Copyright © 2024 Elsevier Ltd. All rights reserved, including those for text and data mining, AI training, and similar technologies.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…