• Curr Opin Anaesthesiol · Oct 2024

    Review

    Harnessing artificial intelligence for predicting and managing postoperative pain: a narrative literature review.

    • Ruba Sajdeya and Samer Narouze.
    • Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.
    • Curr Opin Anaesthesiol. 2024 Oct 1; 37 (5): 604615604-615.

    Purpose Of ReviewThis review examines recent research on artificial intelligence focusing on machine learning (ML) models for predicting postoperative pain outcomes. We also identify technical, ethical, and practical hurdles that demand continued investigation and research.Recent FindingsCurrent ML models leverage diverse datasets, algorithmic techniques, and validation methods to identify predictive biomarkers, risk factors, and phenotypic signatures associated with increased acute and chronic postoperative pain and persistent opioid use. ML models demonstrate satisfactory performance to predict pain outcomes and their prognostic trajectories, identify modifiable risk factors and at-risk patients who benefit from targeted pain management strategies, and show promise in pain prevention applications. However, further evidence is needed to evaluate the reliability, generalizability, effectiveness, and safety of ML-driven approaches before their integration into perioperative pain management practices.SummaryArtificial intelligence (AI) has the potential to enhance perioperative pain management by providing more accurate predictive models and personalized interventions. By leveraging ML algorithms, clinicians can better identify at-risk patients and tailor treatment strategies accordingly. However, successful implementation needs to address challenges in data quality, algorithmic complexity, and ethical and practical considerations. Future research should focus on validating AI-driven interventions in clinical practice and fostering interdisciplinary collaboration to advance perioperative care.Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…