• Annals of medicine · Dec 2024

    Identification of MORN3 and LLGL2 as novel diagnostic biomarkers for latent tuberculosis infection using machine learning strategies and experimental verification.

    • Longxiang Xie, Gaoya Zhu, Sibo Long, Mengna Wang, Xinxin Cheng, Yuzhe Dong, Chaoyang Wang, and Guirong Wang.
    • Department of General Surgery, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, China.
    • Ann. Med. 2024 Dec 1; 56 (1): 23807972380797.

    BackgroundCurrent diagnostic methods cannot effectively distinguish between latent tuberculosis infection (LTBI) and active tuberculosis (ATB). This study aims to explore novel non-invasive diagnostic biomarkers for LTBI and to elucidate possible molecular mechanisms of LTBI pathogenesis.MethodsThree GEO datasets (GSE19439, GSE19444, and GSE62525) were utilized to analyze the differentially expressed genes (DEGs). Functional enrichment studies were then performed on these DEGs. To ascertain potential diagnostic biomarkers, we utilized two different machine learning techniques: LASSO and RF. ROC curves were constructed in both the training and validation datasets to assess the diagnostic efficacy. The expression of identified biomarkers was verified by RT-qPCR in our own Chinese cohort. Using CIBERSORT, we estimated the abundances of 22 immune cell types in LTBI group, and subsequently analyzed the relationship between biomarker expression and immune cell infiltration.Results166 DEGs were identified between ATB and LTBI groups, which are primarily associated with immune responses, inflammatory signaling pathways, and infection factors. Following that, 22 candidate diagnostic biomarkers for LTBI were selected in the machine learning process. Three up-regulated genes, MORN3, LLGL2, and IFT140, whose expression levels were not previously reported in TB, were validated using the training and validation cohort datasets. In our own Chinese cohort, we also found that MORN3 and LLGL2 showed good diagnostic effect using RT-qPCR method. Finally, we revealed the specific infiltration features of immune cells in LTBI and observed a notable correlation between potential marker expression and immune cells.ConclusionsMORN3 and LLGL2 emerged as candidate diagnostic biomarkers for LTBI, following the elucidation of the key immune cell types involved. Our findings will contribute to providing a potential target for early noninvasive diagnosis of LTBI patients.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.