• Bmc Med · Jul 2024

    Development and validation of a patient-level model to predict dementia across a network of observational databases.

    • Luis H John, Egill A Fridgeirsson, Jan A Kors, Jenna M Reps, Ross D Williams, Patrick B Ryan, and Peter R Rijnbeek.
    • Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands. l.john@erasmusmc.nl.
    • Bmc Med. 2024 Jul 29; 22 (1): 308308.

    BackgroundA prediction model can be a useful tool to quantify the risk of a patient developing dementia in the next years and take risk-factor-targeted intervention. Numerous dementia prediction models have been developed, but few have been externally validated, likely limiting their clinical uptake. In our previous work, we had limited success in externally validating some of these existing models due to inadequate reporting. As a result, we are compelled to develop and externally validate novel models to predict dementia in the general population across a network of observational databases. We assess regularization methods to obtain parsimonious models that are of lower complexity and easier to implement.MethodsLogistic regression models were developed across a network of five observational databases with electronic health records (EHRs) and claims data to predict 5-year dementia risk in persons aged 55-84. The regularization methods L1 and Broken Adaptive Ridge (BAR) as well as three candidate predictor sets to optimize prediction performance were assessed. The predictor sets include a baseline set using only age and sex, a full set including all available candidate predictors, and a phenotype set which includes a limited number of clinically relevant predictors.ResultsBAR can be used for variable selection, outperforming L1 when a parsimonious model is desired. Adding candidate predictors for disease diagnosis and drug exposure generally improves the performance of baseline models using only age and sex. While a model trained on German EHR data saw an increase in AUROC from 0.74 to 0.83 with additional predictors, a model trained on US EHR data showed only minimal improvement from 0.79 to 0.81 AUROC. Nevertheless, the latter model developed using BAR regularization on the clinically relevant predictor set was ultimately chosen as best performing model as it demonstrated more consistent external validation performance and improved calibration.ConclusionsWe developed and externally validated patient-level models to predict dementia. Our results show that although dementia prediction is highly driven by demographic age, adding predictors based on condition diagnoses and drug exposures further improves prediction performance. BAR regularization outperforms L1 regularization to yield the most parsimonious yet still well-performing prediction model for dementia.© 2024. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.