• Neurocritical care · Aug 2024

    Relationships of Jugular Bulb Parameters with Cerebral Perfusion and Metabolism After Resuscitation from Cardiac Arrest: A Post-Hoc Analysis of Experimental Studies Using a Minipig Model.

    • LeeHyoung YounHYTrauma Center, Chonnam National University Hospital, Gwangju, Republic of Korea., Najmiddin Mamadjonov, Yong Hun Jung, Kyung Woon Jeung, Tae-Hoon Kim, Jin Woong Kim, Hyung Joong Kim, Jorge Antonio Gumucio, and David D Salcido.
    • Trauma Center, Chonnam National University Hospital, Gwangju, Republic of Korea.
    • Neurocrit Care. 2024 Aug 8.

    BackgroundCerebral blood flow (CBF) decreases in the first few hours or days following resuscitation from cardiac arrest, increasing the risk of secondary cerebral injury. Using data from experimental studies performed in minipigs, we investigated the relationships of parameters derived from arterial and jugular bulb blood gas analyses and lactate levels (jugular bulb parameters), which have been used as indicators of cerebral perfusion and metabolism, with CBF and the cerebral lactate to creatine ratio measured with dynamic susceptibility contrast magnetic resonance imaging and proton magnetic resonance spectroscopy, respectively.MethodsWe retrospectively analyzed 36 sets of the following data obtained during the initial hours following resuscitation from cardiac arrest: percent of measured CBF relative to that at the prearrest baseline (%CBF), cerebral lactate to creatine ratio, and jugular bulb parameters, including jugular bulb oxygen saturation, jugular bulb lactate, arterial-jugular bulb oxygen content difference, cerebral extraction of oxygen, jugular bulb-arterial lactate content difference, lactate oxygen index, estimated respiratory quotient, and arterial-jugular bulb hydrogen ion content difference. Linear mixed-effects models were constructed to examine the effects of each jugular bulb parameter on the %CBF and cerebral lactate to creatine ratio.ResultsThe arterial-jugular bulb oxygen content difference (P = 0.047) and cerebral extraction of oxygen (P = 0.030) had a significant linear relationship with %CBF, but they explained only 12.0% (95% confidence interval [CI] 0.002-0.371) and 14.2% (95% CI 0.005-0.396) of the total %CBF variance, respectively. The arterial-jugular bulb hydrogen ion content difference had a significant linear relationship with cerebral lactate to creatine ratio (P = 0.037) but explained only 13.8% (95% CI 0.003-0.412) of the total variance in the cerebral lactate to creatine ratio. None of the other jugular bulb parameters were related to the %CBF or cerebral lactate to creatine ratio.ConclusionsIn conclusion, none of the jugular bulb parameters appeared to provide sufficient information on cerebral perfusion and metabolism in this setting.© 2024. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…