• Am J Emerg Med · Oct 2024

    Analyzing unmanned aerial vehicle (drone) attacks; a disaster medicine perspective.

    • Vadym Shapovalov, Quincy K Tran, Maria Groussis, Gregory Jasani, Laura Tilley, and Ali Pourmand.
    • Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Emergency and Hospital Medicine, Lehigh Valley Health Network, Allentown, PA, United States.
    • Am J Emerg Med. 2024 Oct 1; 84: 135140135-140.

    IntroductionUnmanned aerial vehicles (UAVs), more commonly known as drones, have rapidly become more diverse in capabilities and utilization through technology advancements and affordability. While drones have had significant positive impact on healthcare and consumer delivery particularly in remote and austere environments, Violent Non-State Actors (VNSAs) have increasingly used drones as weapons in planning and executing terrorist attacks resulting in significant morbidity and mortality. We aim to analyze drone-related attacks globally against civilians and critical infrastructure for more effective hospital and prehospital care preparedness.MethodsWe retrospectively reviewed the Global Terrorism Database (GTD) from 1970 to 2020 to analyze the worldwide prevalence of drone-related attacks against civilians and critical infrastructure. Cases were excluded if they had insufficient information regarding a drone involvement, and if attacks were conducted by the government entities. The trends in the number of attacks per month, as well as the number of fatalities and injuries, were examined using time series and trend analysis.ResultsThe database search yielded 253 drone-related incidents, 173 of which met inclusion criteria. These incidents resulted in 92 fatalities and 215 injuries with civilian targets most commonly attacked by drones (76 events, 43.9%), followed by military (46 events, 26.5-%). The Middle East region was most affected (168 events, 97% of attacks) and the Islamic state of Iraq was the most common perpetrator (106 events, 61.2%). Almost all attacks were by explosive devices attached to drones (172 events, 99.4%). Time series with linear trend analyses suggested an upward trends of drone attacks by VNSAs, resulting in a greater number of injuries and fatalities, that became more frequent over the years.ConclusionsOvertime, there were upward trends of drone attacks, with higher lethality and morbidity. There were more injuries compared to fatalities. Most common region affected was the Middle East, and most common type of weapon employed by drone technology was explosive weapon. Investment in medical personnel training, security, and research is crucial for an effective mass-casualty incident response after the drone attacks.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…