• Am J Emerg Med · Oct 2024

    Development and validation of a machine learning framework for improved resource allocation in the emergency department.

    • Abdel Badih El Ariss, Norawit Kijpaisalratana, Saadh Ahmed, Jeffrey Yuan, Adriana Coleska, Andrew Marshall, Andrew D Luo, and Shuhan He.
    • Emergency Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
    • Am J Emerg Med. 2024 Oct 1; 84: 141148141-148.

    ObjectiveThe Emergency Severity Index (ESI) is the most commonly used system in over 70% of all U.S. emergency departments (ED) that uses predicted resource utilization as a means to triage [1], Mistriage, which includes both undertriage and overtriage has been a persistent issue, affecting 32.2% of total ED visits [2]. Our goal is to develop a machine learning framework that predicts patients' resource needs, thereby improving resource allocation during triage.MethodsThis retrospective study analyzed ED visits from the Medical Information Mart for Intensive Care IV, dividing the data into training (80%) and testing (20%) cohorts. We utilized data available during triage, including patient vital signs, age, gender, mode of arrival, medication history, and chief complaint. Azure AutoML was used to create different machine learning models trained to predict the 144 target columns including laboratory panels and imaging modalities as well as medications required during patients' ED visits. The 144 models' performance was evaluated using the area under the receiver operating characteristic curve (AUROC), F1 score, accuracy, precision and recall.ResultsA total of 391,472 ED visits were analyzed. 144 Voting ensemble models were created for each target. All frameworks achieved on average an AUC score of 0.82 and accuracy of 0.76. We gathered the feature importance for each target and observed that 'chief complaint', among others, had a high aggregate feature importance across different targets.ConclusionThis study shows the high accuracy in predicting resource needs for patients in the ED using a machine learning model. This can greatly improve patient flow and resource allocation in already resource limited emergency departments.Copyright © 2024. Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.