-
- Paramita Basu, Akshitha Maddula, Tyler S Nelson, Pranav Prasoon, Michelle K Winter, Herbert Herzog, Kenneth E McCarson, and Bradley K Taylor.
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to End Opioid Misuse, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Anesthesiology. 2024 Nov 1; 141 (5): 946968946-968.
BackgroundNeuropeptide Y (NPY) Y2 receptor (Y2) antagonist BIIE0246 can both inhibit and facilitate nociception. The authors hypothesized that Y2 function depends on inflammation or nerve injury status.MethodsThe authors implemented a battery of behavioral tests in mice of both sexes that received (1) no injury; (2) an incision model of postoperative pain; (3) a spared nerve injury model of neuropathic pain; and (4) a latent sensitization model of chronic postsurgical pain. In addition to Y2 gene expression assays, spinal Y2 G-protein coupling was studied with guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding assays.ResultsThe authors report that intrathecal BIIE0246 increased mechanical and cold hypersensitivity, produced behavioral signs of spontaneous nociception and itch, and produced conditioned place aversion and preference in normal, uninjured mice. BIIE0246 did not change heat hypersensitivity or motor coordination. Conditional (sensory neuron-specific) Y2 deletion prevented BIIE0246-induced mechanical and cold hypersensitivity, nocifensive behaviors, and aversion. Both conditional deletion and pharmacologic blockade of Y2 reduced mechanical and thermal hypersensitivity after incision or nerve injury. SNI did not change the sensitivity of Y2 G-protein coupling with the Y2 agonist peptide YY (3-36) (PYY3-36), but increased the population of Y2 that effectively coupled G-proteins. Intrathecal PYY3-36 failed to reduce spared nerve injury- or incision-induced hypersensitivity in C57BL/6N mice. Incision did not change Npy2r gene expression in dorsal root ganglion.ConclusionsThe authors conclude that Y2 at central terminals of primary afferent neurons provides tonic inhibition of mechanical and cold nociception and itch. This switches to the promotion of mechanical and thermal hyperalgesia in models of acute and chronic postsurgical and neuropathic pain, perhaps due to an increase in the population of Y2 that effectively couples to G-proteins. These results support the development of Y2 antagonists for the treatment of chronic postsurgical and neuropathic pain.Copyright © 2024 American Society of Anesthesiologists. All Rights Reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.