-
- Guido Dias Machado, Leticia Libório Santos, and Alexandre Braga Libório.
- Medical Sciences Postgraduate Program, Universidade de Fortaleza- UNIFOR, Fortaleza, Ceará, Brazil.
- Crit Care. 2024 Aug 12; 28 (1): 272272.
IntroductionThe current definition of acute kidney injury (AKI) includes increased serum creatinine (sCr) concentration and decreased urinary output (UO). Recent studies suggest that the standard UO threshold of 0.5 ml/kg/h may be suboptimal. This study aimed to develop and validate a novel UO-based AKI classification system that improves mortality prediction and patient stratification.MethodsData were obtained from the MIMIC-IV and eICU databases. The development process included (1) evaluating UO as a continuous variable over 3-, 6-, 12-, and 24-h periods; (2) identifying 3 optimal UO cutoff points for each time window (stages 1, 2, and 3); (3) comparing sensitivity and specificity to develop a unified staging system; (4) assessing average versus persistent reduced UO hourly; (5) comparing the new UO-AKI system to the KDIGO UO-AKI system; (6) integrating sCr criteria with both systems and comparing them; and (7) validating the new classification with an independent cohort. In all these steps, the outcome was hospital mortality. Another analyzed outcome was 90-day mortality. The analyses included ROC curve analysis, net reclassification improvement (NRI), integrated discrimination improvement (IDI), and logistic and Cox regression analyses.ResultsFrom the MIMIC-IV database, 35,845 patients were included in the development cohort. After comparing the sensitivity and specificity of 12 different lowest UO thresholds across four time frames, 3 cutoff points were selected to compose the proposed UO-AKI classification: stage 1 (0.2-0.3 mL/kg/h), stage 2 (0.1-0.2 mL/kg/h), and stage 3 (< 0.1 mL/kg/h) over 6 h. The proposed classification had better discrimination when the average was used than when the persistent method was used. The adjusted odds ratio demonstrated a significant stepwise increase in hospital mortality with advancing UO-AKI stage. The proposed classification combined or not with the sCr criterion outperformed the KDIGO criteria in terms of predictive accuracy-AUC-ROC 0.75 (0.74-0.76) vs. 0.69 (0.68-0.70); NRI: 25.4% (95% CI: 23.3-27.6); and IDI: 4.0% (95% CI: 3.6-4.5). External validation with the eICU database confirmed the superior performance of the new classification system.ConclusionThe proposed UO-AKI classification enhances mortality prediction and patient stratification in critically ill patients, offering a more accurate and practical approach than the current KDIGO criteria.© 2024. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.