• Pain · Jan 2025

    Small molecule targeting NaV1.7 via inhibition of CRMP2-Ubc9 interaction reduces pain-related outcomes in a rodent osteoarthritic model.

    • Sara Hestehave, Heather N Allen, Kimberly Gomez, Paz Duran, Aida Calderon-Rivera, Santiago Loya-López, Erick J Rodríguez-Palma, and Rajesh Khanna.
    • Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States.
    • Pain. 2025 Jan 1; 166 (1): 9911199-111.

    AbstractOsteoarthritis (OA) is a highly prevalent and disabling joint disease, characterized by pathological progressive joint deformation and clinical symptoms of pain. Disease-modifying treatments remain unavailable, and pain-mitigation is often suboptimal, but recent studies suggest beneficial effects by inhibition of the voltage-gated sodium channel Na V 1.7. We previously identified compound 194 as an indirect inhibitor of Na V 1.7 by preventing SUMOylation of the Na V 1.7-trafficking protein, collapsin response mediator protein 2. Compound 194 reduces the functional activity of Na V 1.7 channels and produces effective analgesia in a variety of acute and neuropathic pain models. However, its effectiveness has not yet been evaluated in models of OA. Here, we explore the effects of 194 on pain-related outcomes in the OA-like monoiodoacetate model using behavioral assessment, biochemistry, novel in vivo fiber photometry, and patch clamp electrophysiology. We found that the monoiodoacetate model induced (1) increased pain-like behaviors and calcium responses of glutamatergic neurons in the parabrachial nucleus after evoked cold and mechanical stimuli, (2) conditioned place aversion to mechanical stimulation, (3) functional weight bearing asymmetry, (4) increased sodium currents in dorsal root ganglia neurons, and (5) increased calcitonin gene-related peptide-release in the spinal cord. Crucially, administration of 194 improved all these pain-related outcomes. Collectively, these findings support indirect inhibition of Na V 1.7 as an effective treatment of OA-related pain through the inhibition of collapsin response mediator protein 2-SUMOylation via compound 194.Copyright © 2024 International Association for the Study of Pain.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…