• Neurocritical care · Aug 2024

    Predictive Models of Long-Term Outcome in Patients with Moderate to Severe Traumatic Brain Injury are Biased Toward Mortality Prediction.

    • Florian P Martin, Thomas Goronflot, Jean D Moyer, Olivier Huet, Karim Asehnoune, Raphaël Cinotti, Pierre A Gourraud, and Antoine Roquilly.
    • Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1064, Center for Research in Transplantation and Translational Immunology (CR2TI), 22 Boulevard Bénoni Goullin, 44200, Nantes, France. florian.martin2@univ-nantes.fr.
    • Neurocrit Care. 2024 Aug 13.

    BackgroundThe prognostication of long-term functional outcomes remains challenging in patients with traumatic brain injury (TBI). Our aim was to demonstrate that intensive care unit (ICU) variables are not efficient to predict 6-month functional outcome in survivors with moderate to severe TBI (msTBI) but are mostly associated with mortality, which leads to a mortality bias for models predicting a composite outcome of mortality and severe disability.MethodsWe analyzed the data from the multicenter randomized controlled Continuous Hyperosmolar Therapy in Traumatic Brain-Injured Patients trial and developed predictive models using machine learning methods and baseline characteristics and predictors collected during ICU stay. We compared our models' predictions of 6-month binary Glasgow Outcome Scale extended (GOS-E) score in all patients with msTBI (unfavorable GOS-E 1-4 vs. favorable GOS-E 5-8) with mortality (GOS-E 1 vs. GOS-E 2-8) and binary functional outcome in survivors with msTBI (severe disability GOS-E 2-4 vs. moderate to no disability GOS-E 5-8). We investigated the link between ICU variables and long-term functional outcomes in survivors with msTBI using predictive modeling and factor analysis of mixed data and validated our hypotheses on the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model.ResultsBased on data from 370 patients with msTBI and classically used ICU variables, the prediction of the 6-month outcome in survivors was inefficient (mean area under the receiver operating characteristic 0.52). Using factor analysis of mixed data graph, we demonstrated that high-variance ICU variables were not associated with outcome in survivors with msTBI (p = 0.15 for dimension 1, p = 0.53 for dimension 2) but mostly with mortality (p < 0.001 for dimension 1), leading to a mortality bias for models predicting a composite outcome of mortality and severe disability. We finally identified this mortality bias in the IMPACT model.ConclusionsWe demonstrated using machine learning-based predictive models that classically used ICU variables are strongly associated with mortality but not with 6-month outcome in survivors with msTBI, leading to a mortality bias when predicting a composite outcome of mortality and severe disability.© 2024. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…