-
- Chenyang Zheng, Qinqin Shen, Lingjun Zhao, and Yijun Wang.
- Department of Gynecology, Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Brit J Hosp Med. 2024 Jul 30; 85 (7): 1131-13.
AbstractAims/Background Cervical cancer continues to be a significant cause of cancer-related deaths among women, especially in low-resource settings where screening and follow-up care are lacking. The transcription factor zinc finger E-box-binding homeobox 2 (ZEB2) has been identified as a potential marker for tumour aggressiveness and cancer progression in cervical cancer tissues. Methods This study presents a hybrid deep learning system developed to classify cervical cancer images based on ZEB2 expression. The system integrates multiple convolutional neural network models-EfficientNet, DenseNet, and InceptionNet-using ensemble voting. We utilised the gradient-weighted class activation mapping (Grad-CAM) visualisation technique to improve the interpretability of the decisions made by the convolutional neural networks. The dataset consisted of 649 annotated images, which were divided into training, validation, and testing sets. Results The hybrid model exhibited a high classification accuracy of 94.4% on the test set. The Grad-CAM visualisations offered insights into the model's decision-making process, emphasising the image regions crucial for classifying ZEB2 expression levels. Conclusion The proposed hybrid deep learning model presents an effective and interpretable method for the classification of cervical cancer based on ZEB2 expression. This approach holds the potential to substantially aid in early diagnosis, thereby potentially enhancing patient outcomes and mitigating healthcare costs. Future endeavours will concentrate on enhancing the model's accuracy and investigating its applicability to other cancer types.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.