• Am J Manag Care · Aug 2024

    A machine learning technology for addressing medication-related risk in older, multimorbid patients.

    • Diane L Seger, Mary G Amato, Michelle Frits, Christine Iannaccone, Aqsa Mugal, Frank Chang, Julie Fiskio, Lynn A Volk, and Lisa S Rotenstein.
    • Brigham and Women's Hospital, 75 Francis St, Boston, MA 02215. Email: lrotenstein@bwh.harvard.edu.
    • Am J Manag Care. 2024 Aug 1; 30 (8): e233e239e233-e239.

    ObjectivesTo evaluate the FeelBetter machine learning system's ability to accurately identify older patients with multimorbidity at Brigham and Women's Hospital at highest risk of medication-associated emergency department (ED) visits and hospitalizations, and to assess the system's ability to provide accurate medication recommendations for these patients.Study DesignRetrospective cohort study.MethodsThe system uses medications, demographics, diagnoses, laboratory results, health care utilization patterns, and costs to stratify patients' risk of ED visits and hospitalizations. Patients were assigned 1 of 22 risk levels based on their system-generated risk percentile of either ED visits or hospitalizations. Logistic regression models were used to estimate the odds of ED visits and hospitalizations associated with each successive risk level compared with the 45th to 50th percentiles. After stratification, 100 high-risk (95th-100th percentiles) and 100 medium-risk (45th-55th percentiles) patients were randomly selected for generation of medication recommendations. Two clinical pharmacists reviewed the system-generated medication recommendations for these patients.ResultsLogistic regression models predicting 3-month utilization showed that compared with the 45th to 50th percentiles, patients in the top 1% risk percentile had ORs of 7.9 and 17.3 for ED visits and hospitalizations, respectively. The first 5 high-priority medications on each patient's medication list were associated with a mean (SD) of 6.65 (4.09) warnings. Of 1290 warnings reviewed, 1151 (89.2%) were assessed as correct.ConclusionsThe FeelBetter system effectively stratifies older patients with multimorbidity at risk of ED use and hospitalizations. Medication recommendations provided by the system are largely accurate and can potentially be beneficial for patient care.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…