• J Clin Monit Comput · Oct 2024

    Measurement of transcranial Doppler insonation angles from three-dimensional reconstructions of CT angiography scans.

    • Daniel F Leotta, Mark Anderson, Angela Straccia, R Eugene Zierler, Alberto Aliseda, Florence H Sheehan, and Deepak Sharma.
    • Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA, 98105, USA. leotta@uw.edu.
    • J Clin Monit Comput. 2024 Oct 1; 38 (5): 110111151101-1115.

    AbstractBlood velocities measured by Transcranial Doppler (TCD) are dependent on the angle between the incident ultrasound beam and the direction of blood flow (known as the Doppler angle). However, when TCD examinations are performed without imaging the Doppler angle for each vessel segment is not known. We have measured Doppler angles in the basal cerebral arteries examined with TCD using three-dimensional (3D) vessel models generated from computed tomography angiography (CTA) scans. This approach produces angle statistics that are not accessible during non-imaging TCD studies. We created 3D models of the basal cerebral arteries for 24 vasospasm patients. Standard acoustic windows were mapped to the specific anatomy of each patient. Virtual ultrasound transmit beams were generated that originated from the acoustic window and intersected the centerline of each arterial segment. Doppler angle measurements were calculated and compiled for each vessel segment. Doppler angles were smallest for the middle cerebral artery M1 segment (median 24.6°) and ophthalmic artery (median 25.0°), and largest for the anterior cerebral artery A2 segment (median 76.4°) and posterior cerebral artery P2 segment (median 75.8°). The ophthalmic artery had the highest proportion of Doppler angles that were less than 60° (99%) while the anterior cerebral artery A2 segment had the lowest proportion of Doppler angles that were less than 60° (10%). These angle measurements indicate the expected deviation between measured and true velocities in the cerebral arteries, highlighting specific segments that may be prone to underestimation of velocity.© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.