• World Neurosurg · Oct 2024

    Comparative Study

    Experimental broad-based curved sidewall aneurysms in rabbits mimicking human carotid siphon aneurysms: proof of feasibility and comparability using computational fluid dynamics.

    • Branko Popadic, Florian Scheichel, Cornelia Pangratz-Daller, Roberto Plasenzotti, Helga Bergmeister, Thomas Haider, Georg Mach, Martin Krssak, and Camillo Sherif.
    • Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria; Department of Neurosurgery, University Hospital St. Pölten, Pölten, Austria; Cerebrovascular Research Group, Department of Neurosurgery, University Hospital St. Pölten, Pölten, Austria. Electronic address: branko.popadic@stpoelten.lknoe.at.
    • World Neurosurg. 2024 Oct 1; 190: e939e945e939-e945.

    Background/ObjectiveBroad-based sidewall aneurysms of the carotid artery are primarily treated endovascularly. However, recurrence or rupture after treatment still poses a significant risk. Hence, reliable animal models mimicking this aneurysm type are essential for to evaluate the performance of new advanced endovascular devices.MethodsExperimental aneurysms were created in 12 New Zealand white rabbits (2.5-3.5 kg). The human carotid siphon was mimicked with an end-to-end anastomosis of both common carotid arteries. A venous pouch was sutured on the convexity to mimic a broad-based side wall aneurysm. Patency and configuration were investigated 4 weeks postoperatively by 3-T magnetic resonance angiography. To compare flow conditions of broad-based sidewall aneurysms in rabbits and humans, exemplary computational fluid dynamics simulations were performed using species-specific blood viscosity values.ResultsWe were able to achieve 0% peri- or postoperative mortality. Patency was confirmed by 3-T magnetic resonance angiography in 11 of 12 aneurysms (91.7%). Aneurysm lengths ranged from 6.4 to 9.8 mm and aneurysm necks from 7.3 to 9.8 mm. Computational fluid dynamics showed simple flow profiles with one vortex in rabbit as well as in human aneurysms. Wall shear stress rates were comparable using species-specific blood viscosity values (rabbit mean 1.65 Pa vs. human mean 1.7 Pa).ConclusionsThe broad-based curved sidewall aneurysm model mimicking the carotid siphon showed high aneurysm patency rates with low morbidity. High comparability with human flow patterns and human intranaeurysmal biomechanical forces was shown using simulations.Copyright © 2024 Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…