• Annals of medicine · Dec 2024

    Multicenter Study

    Development and validation of risk prediction model for adverse outcomes in trauma patients.

    • Qian Zhuang, Jianchao Liu, Wei Liu, Xiaofei Ye, Xuan Chai, Songmei Sun, Cong Feng, and Lin Li.
    • Department of Innovative Medical Research, Chinese People's Liberation Army General Hospital, Beijing, China.
    • Ann. Med. 2024 Dec 1; 56 (1): 23910182391018.

    BackgroundThe prognosis of trauma patients is highly dependent on early medical diagnosis. By constructing a nomogram model, the risk of adverse outcomes can be displayed intuitively and individually, which has important clinical implications for medical diagnosis.ObjectiveTo develop and evaluate models for predicting patients with adverse outcomes of trauma that can be used in different data availability settings in China.MethodsThis was a retrospective prognostic study using data from 8 public tertiary hospitals in China from 2018. The data were randomly divided into a development set and a validation set. Simple, improved and extended models predicting adverse outcomes were developed, with adverse outcomes defined as in-hospital death or ICU transfer, and patient clinical characteristics, vital signs, diagnoses, and laboratory test values as predictors. The results of the models were presented in the form of nomograms, and performance was evaluated using area under the receiver operating characteristic curve (ROC-AUC), precision-recall (PR) curves (PR-AUC), Hosmer-Lemeshow goodness-of-fit test, calibration curve, and decision curve analysis (DCA).ResultsOur final dataset consisted of 18,629 patients (40.2% female, mean age of 52.3), 1,089 (5.85%) of whom resulted in adverse outcomes. In the external validation set, three models achieved ROC-AUC of 0.872, 0.881, and 0.903, and a PR-AUC of 0.339, 0.337, and 0.403, respectively. In terms of the calibration curves and DCA, the models also performed well.ConclusionsThis prognostic study found that three prediction models and nomograms including the patient clinical characteristics, vital signs, diagnoses, and laboratory test values can support clinicians in more accurately identifying patients who are at risk of adverse outcomes in different settings based on data availability.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…