• J Clin Monit Comput · Aug 2024

    Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices.

    • Heejoon Jeong, Donghee Kim, Dong Won Kim, Seungho Baek, Hyung-Chul Lee, Yusung Kim, and Hyun Joo Ahn.
    • Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
    • J Clin Monit Comput. 2024 Aug 19.

    PurposeIntraoperative hypotension is associated with adverse outcomes. Predicting and proactively managing hypotension can reduce its incidence. Previously, hypotension prediction algorithms using artificial intelligence were developed for invasive arterial blood pressure monitors. This study tested whether routine non-invasive monitors could also predict intraoperative hypotension using deep learning algorithms.MethodsAn open-source database of non-cardiac surgery patients ( https://vitadb.net/dataset ) was used to develop the deep learning algorithm. The algorithm was validated using external data obtained from a tertiary Korean hospital. Intraoperative hypotension was defined as a systolic blood pressure less than 90 mmHg. The input data included five monitors: non-invasive blood pressure, electrocardiography, photoplethysmography, capnography, and bispectral index. The primary outcome was the performance of the deep learning model as assessed by the area under the receiver operating characteristic curve (AUROC).ResultsData from 4754 and 421 patients were used for algorithm development and external validation, respectively. The fully connected model of Multi-head Attention architecture and the Globally Attentive Locally Recurrent model with Focal Loss function were able to predict intraoperative hypotension 5 min before its occurrence. The AUROC of the algorithm was 0.917 (95% confidence interval [CI], 0.915-0.918) for the original data and 0.833 (95% CI, 0.830-0.836) for the external validation data. Attention map, which quantified the contributions of each monitor, showed that our algorithm utilized data from each monitor with weights ranging from 8 to 22% for determining hypotension.ConclusionsA deep learning model utilizing multi-channel non-invasive monitors could predict intraoperative hypotension with high accuracy. Future prospective studies are needed to determine whether this model can assist clinicians in preventing hypotension in patients undergoing surgery with non-invasive monitoring.© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.