• Military medicine · Aug 2024

    Hybrid III Manikin Lumbar Spine Loading Under Vertical Impact.

    • Narayan Yoganandan, Jason Moore, Tim A Westerhof, and Nico A Flierman.
    • Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
    • Mil Med. 2024 Aug 19; 189 (Suppl 3): 556255-62.

    IntroductionClinical investigations have attributed lumbar spine injuries in combat to the vertical vector. Injury prevention strategies include the determination of spine biomechanics under this vector and developing/evaluating physical devices for use in live fire and evaluation-type tests to enhance Warfighter safety. While biological models have replicated theater injuries in the laboratory, matched-pair tests with physical devices are needed for standardized tests. The objective of this investigation is to determine the responses of the widely used Hybrid III lumbar spine under the vertical impact-loading vector.Materials And MethodsOur custom vertical accelerator device was used in the study. The manikin spinal column was mounted between the inferior and superior six-axis load cells, and the impact was delivered to the inferior end. The first group of tests consisted of matched-pair repeatability tests, second group consisted of adding matched-pair tests to this first group to determine the response characteristics, and the third group consisted of repeating the earlier two groups by changing the effective torso mass from 12 to 16 kg. Peak axial, shear, and resultant forces at the two ends of the spine were obtained.ResultsThe first group of 12 repeatability tests showed that the mean difference in the axial force between two tests at the same velocity across the entire range of inputs was <3% at both ends. In the second group, at the inferior end, the axial and shear forces ranged from 4.9-25.2 kN to 0.7-3.0 kN. Shear forces accounted for a mean of 11 ± 6% and 12 ± 4% of axial forces at the two ends. In the third group of tests with increased torso mass, repeatability tests showed that the mean difference in the axial force between the two tests at the same velocity across the entire range of inputs was <2% at both ends. At the inferior end, the axial and shear forces ranged from 5.7-28.7 kN to 0.6-3.4 kN. Shear forces accounted for a mean of 11 ± 8% and 9 ± 3% of axial forces across all tests at the inferior and superior ends. Other data including plots of axial and shear forces at the superior and inferior ends across tested velocities of the spine are given in the paper.ConclusionsThe Hybrid III lumbar spine when subjected to vertical impact simulating underbody blast levels showed that the impact is transmitted via the axial loading mechanism. This finding paralleled the results of axial force predominance over shear forces and axial loading injuries to human spines. Axial forces increased with increasing velocity suggesting the possibility of developing injury assessment risk curves, i.e., the manikin spine does not saturate, and its response is not a step function. It is possible to associate probability values for different force magnitudes. A similar conclusion was found to be true for both magnitudes of added effective torso mass at the superior end of the manikin spinal column. Additional matched-pair tests are needed to develop injury criteria for the Hybrid III male and female lumbar spines.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2024. This work is written by (a) US Government employee(s) and is in the public domain in the US.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.